
DESiGN OF EXPER:MENTS
|

-

-

Manager,
Electronic Data Processing Division,
Sanyo & Kokusaku Pulp Co., Ltd.

JAPANESE STANDARDS ASSOCIAT10N

GROUP TRAl‖ |‖G 00URSE I‖

l‖DUSTRIAL SttA‖ DARDiZAT10‖  A‖D QUALITY 00‖丁ROL

1973

By
Tadakazu Okuno

Chief, Division of Sutistical Researeh,
National lnstitute of Agricultural Sciences,
Ministry of Agriculture & Forestry,

and

Tosiro Haga



1.

DEsIGN OF EXPERIMENTS

SIMPLE COMPARATIVE EXPERIMENTS

1 .1 Description of the Experiment

The experiment was required to test whether or nor. treatment with a certain
chlorinating agent increased the abrasion resistance of a particular type of rubber.
The experimenter took five test-pieces of the material and divided e'ach piece into
tlvo. One half was treated and the other half was left untreated, the choice rvhich
half of the specimen should receive the treatment being made by tossing a coin.
The abrasion resistance of the five pairs of specimens were then tested by a
machine, the specimens being taken in random order. The five differences, abra-
sion resistance of treated specimen minus abrasion resistance of untreated specimtn,
are shown in Table 1 .1 .
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1 .2 'Iest of Signif icance

In this place, we notice only the signs of the differrencers in'l'ablr' 1.1 ;rnd find
that all th<: five differences are positive. Based on this information much, how
cotrld w<: <lraw infer(lnces ? 'l'he statistical te,st follows as slr<>rvn bolr>lv:

(l) 'fhe lrvpothesis it is desir<:d to test is decidt:d up()n. 'l'ho obserrv€)r !virrrls
to find out whether ther() is probablv a real diffr:rencr', and t.o do t.lris lre consirlors
whether, in thc light of th<+ expcrimc:ntal results, th() lrvpothosis that tht'r<: is n'allv
no difference is tenable. In statistical terminology this hvpothcsis r>f no rt':rl dif-
ference is callcd ttre Null Hypothersis ilr,,. Uudt,r this Null [[.vp<>tlrt'sis it is ry'('(]g*
nized that the probability p of gt'tting the positivt: sign of tho indivirlual diffr.roner.
is,

Il1,: P I r'2 (t.t1

(e) Ther information of lht: scperratr. m(,:rslrre'nf,'nts is rr.plact'd bv a single'
criterion, and is calculated tirr: prob:rbilit.v of cl rawing a m()rc discn'p:rnt samplo
from U11 than the actually obtained data, proyidctl that th<: \ull Hvpothr.sis is trur'.
In this particular instanc-e it is seen that the chance of obtaining thosc fivt: positivt.
signs is,
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(l) A decision is made whether the departure from H3 indicalei 5r- :::e --::r+rion
is such that this hypothesis must be abandoned. Working intuiti.vel5, ::3 -;s+:-ier
would have to decide this from common sense and past experience. Er.c::r -r.x-
treme instances he would find it very difficult to do this.

In the precise statistical test this phase coresponds to the rei+::::.:- ::':5e
above-obtained probability .

(l) If the probability thus obtained is negligibly small , say less::.=: l.- :r
1% Lhe observer rn'ould like1y reject Hgr and the alternative Hypothesis
that a real increase has occured will oe accepted. In doing so, :-.
faces the possibility that he is wrong. Such is the kind of risk i^-:r:;,'-r
run by those who test hypoth<;ses and rest decisions on the tests.

(ii) If the probabitity thus obtained does not shon' an unusually small va. j..
the observer would not likely reject Hg. Of course, he may be ir: err:r.
provided that tl1; is not true. But the discrepancy, if any, is so smali
that the data have given no convincing evidenc:t> of rejecting Hiy.

In this example, the experimenter could reject the \ull Hvpothosis and state
that the treatment lrad increased the abrasion resistance., n'ith the risk of about 3Z
that this statemont rnight be wrong, because this sample miglrt bt: one of those 3 per
1OO samples which \^'ere ()xpected to come to hand even when I[,1 is true. This
probability is usua.lly called r?leveI of significancerr becarrse it signifies rejection.
Of course, we might not re.ject IIg and put off decision till obtaining the further data.

13 Test of I)ifference in a Paired Experiment ( I -test)

We are now taking into consideration the differences themseir'.'s givt n in'l'able
1.1 and performing the I -test, which involves a comparison of the mi.'an differenct>
with its standard error. The procedures are shown in Table' i.l anci belorv.

Table l.2
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″ = (-1)/10 ,r! - uo +=

=1.9 86.5 .865

(t) The NuIl Hvp<-:thesis Ho is g.'o, where g"denotes the poptrlatiot: m+;tn
difference. It is assumed that the obscrvations may be regarded as reoresentine
inrlependent drartings from a normal distributed universe having mean rr.
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(2) The data reported in Table 1.2 are summarized by the following two values:

Mean difference:
Variance r,
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0.865

From these the standard error of

Standard error of the rneErrl =

Then we calculate the quantity I ,
of which was discovered by W.S. Gosset
1924 as,

the mean″ is Obtained as,

‐ 0.416

known as 'student's' I , the distribution
in 19O8 and perfeoted by R. A. Fisher in

deviation of the estimated mean ? from !r.

standard error of mean 7

= (z-p)il?i
when we can replace O for p under H。 .

4.57= (r.s - o) /0.416 (1.4)

(l) Is this an ordinary value of I in sampling from a normal population with
p: O, or is it so unusual as to cause rejection of the Null Hypothesis?

The distribution of I is laid down in I -table. In the case of largo ges6pl6,
itis praciically normal with p=O and the varian""o2 =1. Like th*r normal clis-
tribution, the t-distribution is symmetrical about the mean, which allows the proba-
bility in the table to be stated as that of a larger absolute value, sign ignored.
Entering the I -table with the degrees of freedom equal to four (or in gt'nt'ral one
less than the number of differences), it is found that the appropriate 1/, siglificance
point is 4.604.

The value of t =4.57 is therefore significant at the approxinrate'ly 1y'o l<:v<'l
and the experimenter could conclude that the treatment probably yir'l<lt:d a real
increase in abrasion resistance.

1 .4 Interval Estimation

In the above example the hypothesis that the true mean difference'- in:rbrasion
resistance between treated and untreated specimens was zero was ro,iecte<i bv th<r

I -test. The argument was that if pdenoted the true mean differ(rn(:{r, thop i11

repeated experiments lhe statistic,

(7-ぃ )/(s″電「) (1.5)

would be clistributed to a sufficiently elose approximation as tho tabl<'cl qtrzrntity l.
When p w.rs put equal Lo zero, the value required by the Null Ilvpotlt<'sis, the r:rti<r
equalled 4.57, a value vvhich ',vould be expected to be erquallorl or r.xcccdr:d nt>zrrl-r,
once in a hun<.lred times: the hypothesis thatp=O was therefore re.jt'ctr.'d. 'l'his
same I'orm of test wouid be equally'appropriate to te.st the plausibiiitl,of any othe'r
postulated vaiut: for u. Suppost: it was decided to make thc. tcst at tht' 5I-l, lovt l.
then sinct' frt>m the j -iablc, I has a 5y'. c}:ance of lving outsiclt' tlrt' linrits t 2.776,
those hypothotical valuos of 1r rvhir-h macte (,.9 - p) iO.416 fall outsirlt' th<.-limits
t2.716 would bt,rojectcd, that is to say, those values of pr falting outsidt. tht' limits
T.gO, 1.15. It can thon bc s:rid that at thc. 5/, level of significan(.(' tlre obsu.rv:rtions
are eZnsistent with anv value for the truc mean differenco pr lving betu'erc'n ().75 anct
).O5, but that values for p outsidc tht:se limits are contradictr:d by tho dat:r. 'l'lris
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argument is due to R.A. FISHER, who called these
In general , the fiducial limits for p would be,

limits the Fiducial Limits.

7lr(t;a\ s/J n (1.6)

where t (f;a )is tfre value exceeded with some small probability the degrees of
freedom being f . A different justification was used by J. NEYMAN to amive at
these limits, which he called Confidence Limits.

NEYMAN showed that if these limits were adopted, that is to say, if on comple-
tion of an experiment of this kind it was always said that lay within the limits
V + t(t ; a)' s /.r/7, then in the long run this p statement would be right in a pro-
portion 1- aof the time. 1 -d, is called the Confidence Coefficient, and the limits
are called the 1OO (l -a ) I Confidence Limits. For example t if d is taken equal
to O.O5, they are the 95y', Conlidence Limits.

Note:

(i) If we wish to increase the Confidence Coefflcient, we would have a wider
interval.

(ii) If , on the contrary, we were contented with the lorr Confidence Coeffi-
cie:nt, rre could obtain a nart:ow interval .

(ili) In order to get a reasonably namow interval rvith the considerably high
confidence, we would have to either increase the precision of experiments
themselves or increase the number of replications.

1 .5 The Reason for Taking the Specimens in Pairs

In order that comparison should be made between specimens as iike as possible,
each test-piece was cut into halves, one hall being treateci and the other ha].f not,
The results analysed were the differences in abrasion resistance betrn'een the
treated and untreated specinrens cut from the same test-piece. The comparisons
were thus kept entirely within a test-piece and the large variation between test-
pieces was eliminated both in the design and in the subsequent analysis.

The essential plan is to limit comparisons to within aggregates of material
which are made homogeneous than the wholel these aggregates are called Blocks.
In the example given the blocks are the test-pieces from each of which a treated
and an untreated specimen is obtained. The error appropriate for making the test
is then that due to the variation between a pair of specimens from the same test-
piece if no treatment were applied, the additional variation from one test.-piece to
another being eliminated. This will be seen more clearly by referring to the indi-
vidual results given at the right-hand column of Table 1 .1 .

1 .6 Comparison of Two Randomized Groups

Sometimes there may not be enough knowledge of behavior in the experimental
material to wamant pairing or blocking. The alternative is merely to assign the
individual materials (specimens, test-pieces etc.)at random to the two groups, and
then apply one of the treatments to each group. It will be only the two means that
are compared, not the individual measurements. Experinental error rvill be deter-
mined by the average variation among the individuals within each of the groups.

In order to illustrate the analysis of this type of comparative experiments,
suppose that the data in Table 1.1 were obtained fromthe experiment, which uti-
lized ten test-pieces, one specimen being taken from each test-piece.

Two groups of five test-pieces each are assumed to be drawn at random from
populations in which different treatments may have differentiated the means but not
the variances. Denote the population means of the treated and the untreated group
!y p1 and FO, respectively. 

- io" evidence we have the group means i1 = t3.5 and
to= 11'6'

-4-



Then, the familiar question is this: Is the difference, i1 - 7O = ,;9, attribut-
able to a population difference p1 - l!O, oI may it be random variation from a single
population mean, (that is to say, p1 J Uo)?

To answer this question the following steps are taken:

(t ) We set up the null hypothesis,

HO: μl=Ю

The ι―distribution

(1.7)

ι=〔 (″1-弓 )― (出 ―

which becomes, with H。

/s(71_■
)。

_(1・鋤

ι=lr4-■ )/s(71_L) (1.9)

where s(7, -ir,\ denotes the standard error of the difference of the two means
,rs1 - riy) 'It reX-riins only to calculate the denominator.

(Z) Each group provides an estimate of d2, the variance common to the two
experinental populations. The estimates are obtained as follows:

Treated group

=(;ri-10.0)x1O

175
u1= s>

furnishes a

2,209
1,600
3,844

4
576

8,233

轟
　
ｄ

森

Untreated group
しi=(″i-10.0)x10 し i

７

０

２

２

４

４

４

６

　

２

21

9
45
-7
12

441
81

2,025
49

144

80

宅 =16
Sl=2,108

s12=527

The average of these two estimates is used as the best estimates of d 2.

s2=:(sl:(s12 +s22)=: 古(5。 27+3.65)=4.46… … (r.ro)

Now, as we knolv, the variance of each of the two means is,

,* 2 _ 
=2 / n = 4.46 /s = o.asz (t . t t )

By refering to the mathematical theory or by drawing random samples
experimentally we will be able to know that the variance of random differences is
double that of the original population. We have, therefore,

S(万
1-3。)2_s712+s.2=2s2/n=2xO.892=1.784.… (1.12)
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Substituting the dilference between the group rneans 71 - 7O: 1,.9, along
with its standard error, s(if -aeZ) = JW = 1.t4, we have from"(t.g),

t = (it 7o) /r(et-Zo) ='t.e/1 .34 = 1.42

There are n - 1 = 4 degress of freedom associated both with s12, and with s22,
making 2(n - 1) - a in total.

Comparison of t = 1.42 with the figures corresponding to d.f. :8 in
I - table shows that the probability for this I -value to be equalled or exceeded is
approximately equal to 0.2O.

(l) Since the probability O.2O is of modest size, the null hypothesis can not be
rejected.

Note:
(i) The general formula for obtaining the standard error of the difference of

two means, one from n1 observations and another n2 observations, is
s/- -: i2==-.2* s=2=(t/n1 +l/n2)s2

12 1-r/ ,r1 .r2

- ( rt | 
"2) /(rr1 .r2" 2)

(ii) In section 1.3 and 'l .2 the same nuII hypothesis was rejected with the
risk of about 1/, and 3y'o, respectively, rvhereas, here we cannot reject
it. This comes from having ignored the pair in the testing procedure of
the latter case.

(iil) With increasingly preeise experimentation in any field, resulting from
more exact knowledge of the behavior of the experimental material, group
comparisons are likeIy to be replaced b1' those of i.ndividuals (pairerl
comparison).

(i") If the investigator is interested more in estimates than in tests, he may
choose to use the Confidence Limits rather than I -test.

He may report tinat i1 -iO= 1.9 \,vith ;ne 95y'c Fiducial Limits:

a1 - ro + t (o.o5; 8) "(rr-Jo)
:1.9+2.)06x1,14
=1.9+3.1
: (-r .2 - t5.o)

2. TEST OF EQUALITY OF MORE THAN TWO POPULATIO\ \IEANS

This is a natural extensi.on of comparison of two randomi.zed groups described in
section 1.6. These populations are thought of as having npans characterized by
the treatments but with a common variance unaffected by treatment.

Theoretically, they are normal populations all having the same variance , d2, bul
each with its peculiar mean p. As examples, there may be several lots of animals,
every lot receiving a different rationl or several classes of children in the 6th
grade on which different methods of instruetion are being tried. Table 2.1 con-
tains the data from such an experiment.

プ

´
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Batch No. Al A2 A3 A4

１

２

３

４

22.4
25.6
22.5
19。 7
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０
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１

6.0
14.9
15.6
14.4
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６

９
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２
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８

７

Grand
total

Total
Mean

90。 2

22.6
71.1
17.8

50。 9
12.7

39。 4
9。 9

251.6
15。 725

´ヽ

Table 2.1. Percent Loss of Product in Manufaeture
of an Organic Chemical

Table 2.2. Symbolical Representation of an Experiment

Level of Treatment

Grand
Total

The experimenter wished to learn how the percent loss was influenced by the four
different blends. The usual method of calculation is shown below:

(t) The corection term:

CT = G2,'n

: (zst.o)z/t6 - 3,9i6.41

(Z) The total sum of squares:
ani)ani)

Sr = 
iE=t f., 

(*t: - x)- = 3, ir=, 
x1;- - cr

={zz.+2 +25.6? + . +7.s2)- cr
= 4,449.18 - 3,956.41 = 492.77

(f) The sum of squares for blends (between groups):

--)dcSa= I ni(Xi-X)- = .Z Ti-ln1 -CT
i=1 i=l

=(90。 22+71.12+50.92+39.42)/4-CT

=4,333.605 -3,956.41 =377.195

■ ・

,A1 A2----- ,A3 -----.{4
A21~~~~Xil~~― ―Xal
X22~~~~X12~~~~Xa2

Tl   T2~~~~~Ti― ――――Ta

Xl    X2~~~~~Xi― ――――Xa
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(+) The sum of squares for barches (within groups):

亀=2二 鴨―手 11二 手
ａ
　
２

ｉ〓

Ti /ni

- ST SA- 492.77 -)77.195 =115.575

(l) The results from the last 3 steps, with eoresponding degrees of freedom,
are entered in Table 2.3.

Table 2.3. Analysis of Variance of Percent Loss

Source of
variation

Total T

Treatment A
(between groups)

Error e
(within groups)

2+4

2

A2

Comments:

(i) The degrees of freedom and sum of squares in the last line are got by
subtraction, taking advantage of the addition theorem characterizing this
analysi.s.

(ii) The mean square or variance is obtained from dividing th" @-sqrar"s.
by the corresponding degrees of freedom.

This partition of degrees of freedom and corresponding sums of squares is
called analysis of variance. Under the assumptions outlined above, sampling from
norma1@montl2,g,631isanestimateoft|tiso2.Buithemean
square for treatment, 1 25.732 seems to have an additional component due to the dif-
ferent behaviors of the blends in the chlorsulphonation.

As to the constancy of the varianee, the ranges in the samples are evidence.
For .A1 , the range is 25.6 - 19.7 = 5.9; for the others, 5.1, 9.6, 4.9.

(0) Now, these data introduce a familiar question: is ordinary random sampl-
ing aceountable for the large discrepancy between the mean square for treatment
and error, or shall we conclude that the treatment means are differentiated by
causes other than sampling fluctuations?

The appropriate null hypothesis to be tested is Hg: lL1 = pZ ;.16, which
specifies the population sampled by the levels of treatment. In order to test Hg, a
new test criterion is calculated, the ratio

I\'n=@rerror

To find the 5y'" and |y'. points in F-table, Iook in the column headed by f1. = l
and down to the rows f2 = 12. The required points are these: F (O.O5i 3, 12) =
3.49 and F (O.O1 ; ), 12):5.95. On the other hand, from the anaLysis of variance
in table 2.3, we get

・や

Degrees of Sum of Mean Ffreedom squares square

16-1=15    ST=492.77

4-1= 3     SA=377.195  125.732  12X¥

4(4-1)=12    Se=115.575    9.631

F=125.932/9.$1 >12

-8-



Thus, from the distribution specified in the hypothesis, there is less than one chanee
in 100 of drawing a sample having a larger va"lue of this F. Evidently the samples
come from populations with different p. The conclusion is that the four blends have
different effects on the percent loss in the chlorsulphonation

(Z) Least significant difference

The estimated standard error of the difference between any two treatment
means is

Hence the least significant difference is

=2.19

obtained as follows:

r.s.d. = t(o.o5; 12) s6

=2.179x2.19=4.77,

ヽ

from which we can state that the blends 44 and A3 have the smaller loss than those
of ,{1 and A2 and that the loss of .A2 is smaller than that of .A1 .

3. COMPLETE BLOCK DESIGN

3.1 Basic Principles for Design of Experiments

When several experimental treatments are to be compared it is clearly desirable
that all otherconditions shallbe kept as nearly constant as is practicable. Random
variations will occur and appear as experimentaL error, and some rtReplicationrr
under similar conditions rvi1l be required to compare the treatments with sufficient
reliability; such replication al.so supplies the information to estimate the experimen-
tal error, and this is requireci to assess the reliability.

In practice, particularlS'rvhen the number of trials required is large, it is often
difficult to ensure such sirnilar conditions owing to the natural variability of the
materials and processes invoked. (Even if the variability could be eliminated it
is doubtful whether it rloulcl be s'ise to try, since such variability broadens the basis
of comparison and so renders rhe results more generally applicable.) It is often
possible, however, to split up a set of trials into smaller groups within which strch
variations ar'e likeil'to be less than in the set as a whole- Thus pieces crrt fr<,rn
the same sheet of rubber are expected to be more alike in their properties than pieces
cut from different sheets, and samples taken from a plant over a short period vary
less than those taken over a longer period. l{here these conditions hold, the pr:e-
cision of experiment calr be increased by dividing it into trBlocks.r'witlrin each of
which the random variations are likely to be smaller than in the experi.ment as a
whole. In Randomized BLock Design each block contains all the treatnents concern-
ea (tnis --> being called Complete Block), while the use of several blocks ensures
that the number of observations is sufficient to give the required precision to the
experiment as a whole. \\here the block is too small to accommodate all the treat-
ments, resource may be had to the more complex Incomplete Block Designs discussed
in Chapter 5. This device rBlockingt is called ttlocal Controll and may be consid-
ered as an extension of paired comparison stated in Section 1.3. Sometimes this
blocking can be effected in more than one way; for instanee, in a multiple plant the
various units may differ in performance, and in addition there may exist a trend in
time, as in certain electrolytic and catalytic proeesses. Under such circumstances
the most efficient design for the comparison of different experimental treatments is
known as Latin Square.

2x9.631
4

-9-
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Although the variabiiity within any block is likety to less than thar rn rne experi-
ment as a whole, there rnay be a systematic variation within the individual blocks.
Thus pieces from the centre of a sheet of rubber are likely to differ systematically
from those cut from the edge of the sheet. If therefore the treatments are intro-
duced in the same reLative positions in successive blocks, spurious effects due to
the systematic variations associated with position within a block are likely to be
introduced into the results. To overcome this the arrangement of the treatments
must be different in each block, the actual positions of the treatments within any
block being chosen by an adequate frRandomt? process.

R.A. FISHER gave the following diagram to show the above three basic
principles for design of experiments.

Fig. 3. 1

Rasic Principles for Design of Experiments

Precision increased

3.2 Randomized (Comp1ete) Block Design

(t ) Introduction

Suppose it is required to compare the effects of five treatments, say five lots
of material prepared in different ways, or five temperatures of reaction, and in
order to reduce the uncertainties caused by experimental error it is decided to test
each treatment four times, making twenty trials in a1i, then the ideal design will
provide for all twenty trials to be carried out under uniform conditions, apart from
deliberate variation of the treatments. In practice it may be impossible to do thi.s
because, for example, sufficient raw material of uniform quality for twenty trial
cannot be made. But it may be that a homogeneous batch of raw material sufficient
for five trials can be made, and if so the experiment may be arranged so that all five
treatments are tested on each of four batches which are homogeneous but not neces-
sarily identical, with the consequence that any variation from batch to batch does
not affect comparisons between the treatments. A typical example arises in the
testing of rubber or other material in sheet form. Suppose five methods of treat-
ing the rubber are to be tested and large sheets are ayailable. Adjacent samples
cut from a rubber sheet are usually more alike than non-adjacent samples, and this
property suggests that comparisons between treatments should be made betrveen
adjacent samples of rubber. To compare five treatments, replicating the experi-
ment four times, four pieces should be cut from different parts of the sheet and each
piece cut into five, for in this way the variation from one set of five to another does
not affect comparisons between the five treatments, which are made entirely within
the sets. Had twenty pieces of rubber been cut from the sheet and the five treat-
ments applied at random the experiment would have been less sensitive, because the
heterogeneity of the material would have inflated the experimentaL error.

Replication

Local ControlRandomization

Vaiidity of
Estimate of Emor Diminution of Error

Test of Significance
Fiducial Statement
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In this context the set of five pieces taken from the same part of the sheet is
calIed a I Blockr . As a precaution against systematic variation from one trial to
another within a block, it is desirable to arrange the treatments within each blo,ck
in random order, and when this has been done the results is a Randomized Block
Design. The terminology originated with agricultural field trials. In order to
mlnimize the effects of differential fertility the experimental area is divided into
compact blocks, each supposed more homogeneous than the whole, and the blocks
are subdivided into plots, one treatment being assigned to each plot. If the plots
were arranged systematically within blocks the experiment would be vitiated by any
fertility gradient occurring in the same directionl consequently the treatments must
be allotted to the plots in random order.

(Z) Layout --- Manufacture of an organic chemical

This investigation concerned the chlorsulphonation of acetanilide. The yield
is somewhat below the theoretical, mainly because of loss of product in the mother
liquor (i.e. ttre liquor removed rri,hen the product is filtered). It was required to
test whether different blends of acetanilide gave different losses, and to do this five
different blends were made and four batches of products were prepared from each
blend. If the blends had been tested one at a time, i.e. four batches from blend 1,
then four batches from blend 2, and so on, any variation from blend to blend might
have been due to a time trend in the process and not to any real differences between
the blends. To eliminate this effect the experiment was designed in randomized
blocks. There rvere twenty batches in all, divided into four blocks of five, the five
in one block being prepared from the five blends of acetanilide in random order.
The following table gives the order of preparation and the blend used.

Block I IV

Batch

Blend

12345

B A C E D

678910

A E B C D

11 12 13 14 15

C A B D E

16 17 18 19 20

B D C E A

(l) Data obtained

Percentage f,oss (Xii)Table 3.1

Block
BIend of acetanilide

A B C D E
1｀otal   Mean
Toj   x.j

Effect
X・ j~X

I

II

III

IV

18。 3  17.1  17.3  15。 1  16。 7
18.8  18,3  18.1  15。 9  16。 9
19.8  19.2  17.2  17.8  16.5
18.3  18。 2  17.0  16.0  17.5

84.5   16.9
88,0   17.6
90.5   18。 1

87.0   17.4

-0。 6
0.1
0.6

-0.1

Total Ti.

Mean xi.

75.2  72.8  69.6  64.8  67.6

18.8  18.2  17.4  16.2  16.9

350.0=G

17.5=x

Effect
Xi・ ~X

+1.3   ■O。 7   -0.1   -1.3   -0.6 0.0

-11 -



(+) Expected values and residual

Table 3.2 Expected Value

会ij=又 +(xi.― ヌ)+(又 .j― 又)

Table 3.3 Residual

Xij― へj=Xij― 又i.― ヌ.j+ヌ

(5) Computation oF sums of squares

l) Xij― ヌ =(Xi.… 又)十 Cス .j― ヌ)+(Xij― ヌi._ヌ .j十 又)

2) ' Σ
(Xij―又)2=r'(ヌ i.I又)2+a′ (ヌ 。j―ヌ)2+′ Σ (Xij―Xi.―X~.j+X~)2

ij l   i 
‖   j l      ‖

ST        SA        SR          Se

3) (ar-1)=(a-1)+(r-1)十 (a-1)(r_1)
‖       ‖      ‖          ‖

fT     fA     fR        fe

Total sum of squares:

ST= イ イ (Xij― X)2
1  3

=(18。 3-17.5)2+(18.8-17.5)2+ ... 十(16.5-17.5)2+(17.5-17.5)2

=25。 84

風

丁

Blend
31ock

A B C D E Total

I

II

III

IV

18。 2  17.6  16.8  15.6  16.3
18.9  18.3  17.5  16。 3  17.0
19.4  18.8  18.0  16.8  17.5
18.7  18.1  17.3  16。 1  16.8

84.5
88.0
90.5
87.0

Total 75。 2  72.8  69.6  64.8  67.6 350.0

B C D EA Total

I

II

III

IV

４

１

０

７

０

０

１

０

二

５

４

０

１

０

０

１

０

二

　

　

一

５

６

８

３

０

０

０

０

一
　

一

５

０

４

１

０

０

０

０

¨
１

１

４

４

０

０

０

０

一
　

　

一

0。 0
0.0
0.0
0.0

Total 0.0  0。 0  0.0  0.0  0。 O O.0

-12-
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Sum oF squares between treatments(blends):

SA=rf(叉i― ヌ)2

=4{1。 32+∝ 72+に→2+ぃ。⇒2+にの2}=“っ6

Sum oF squares between b10cks:

SR=a ′
(ヌ .j― ヌ)2

J

=5{にの2+∝ 12+∝ 62+にっ2)=九 70

Sum of squares due to error(from the residuals in Table 3.3)

Se=ff(Xij― ヌi.― ヌ.j+ヌ )2
l    J

=。 。12 +(_。 。1)2+ ... +(-1.0)2+。 .72_5.18

(6) Computational Procedure

Table 3.4 Code Number

Uij=(Xij-17.0)x10

Table 3.5 Uij

Block

169     1     9
324   169   121
784   484     4
169   144     0

Total 1446   798   134

ST=(H)― CT=3084-500=2584

SA=(I)A~CT=2196-500=1696

SR=(1)R~CT=870-500=370

Se=ST― SA~SR=518

９

１

５

５

２

２

Ｉ

Ｈ

Ｈ

Ｖ

361
121
64
100

3084 = (u)

卍 A B C D E T.j 
'.j'

I

II

III

IV

Ti。

Ti。
2

13     1    3   -19  -3
18   13  11  -11 -1
28    22    2     8  -5
13   12   0  -10  5

５

０

５

０

一

３

５

２

25
900

3025
400

72    48   16   -32  -4

5184  2304  256  1024  16

1oo +lso/s = 87o = (r)n

ala+/+ =2196=(r)a
tooz/zo: 5oo: cr

-13-
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Degrees of Sum of Mean square Variance
freedom squares (Variance) ratio F

fT=19  ST=25。 84

fA= 4  SA=16.96  VA=4.24    9.81キ 半

fR= 3  SR= 3.70  VR=1・ 23    2.85

fe =12   Se = 5。 18   Ve =0・ 432

(Z) Analysis of Variance Table

Table 3.6 Analysis of Variance (decoded) (/,toss)

Source of
Variai.ion

Total T

Treatment
(Blends)

Block R

Error e

Referring
that:

The variation among blends is significant at the 1/o leveLt

F=9.81 F (4, 'f 2; o.o1) = S.ql

The test of significance is appropriate in this example because we were inter-
ested in testing the existence of blend-to-b1end variation rvhich, on chemical grounds,
did not seem likely. Since the mean square between blends is highly significant at
tlr,e 1/, level, we conclude that there is elear evidence of blend-to-blend variation.
If the existence of this variation was not in question but only its rnagnitude, the pro-
blem would be one of estimation and the result would require to be interpreted in
terms either of emors of the first and second kinds or of confidence limits.

Although the apparent variation among blocks is not confirmed (l .e. lt might
well be ascribed to experimental error), future experiments should still be carried
out in the same way. There is no clear evidence of a trend in this set of trials,
but it might well appear in another set, and no complication in experimental arrange-
ment is involved.

(g) Least significant difference

The estimated standard error of the difference between any two blt-.nd means
is

=0.465

from which, we can calculate the least significant difference

los.d. =t(12, 0.05)Sd=1.01.

to the treatment means given at the

A B C E

σ2+4ん A2

oz * 5kr_2

o2

bottom of Table 3.1 , we can conclude

D

(S) Missing plot technique

It has been assumed hitherto that every treatment is equally represented in
every block, so that the effects of block and treatment variation can be assessed by
simple averaging. It may happen that in one of the blocks one treatment is not test-
ed, or more generally the results of one or more treatments in one or more blocks
are not available. We cannot then use the simple analysis given above.

-14-
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Suppose that for some reason the result of one trial, say batch 14 (block UI,
blend D) is not available. The procedure is to calculate from the remaining trials
the most probable value forbatch 14, usingtheestimates ofthe effects ofblock III
and of blend D.

To do this we insert symbol y in place of the missing values, carry out the
analysis of variance including this symbol, and then calculate value for it such that
the residual or error variance is a minimum. This is the best estimate of the mis-
sing value in the sense that it minimises the error varianee.

The estimate of the missing value is obtained by the following formula:

where,

aA+rR -G
Y = G-1x;:i-r

A = total of known observations of the treatment containing y

R = total of known observations of the block containing y

G = total of all known results

0■litting y from these total。

From Table 3.4 it is found that

A=-40, R=47, G=92

Therefore substituting these values will yield the estimate:

y=           =→
子

― =-9

An appropriate analysis of variance can now be carried out in the usual way,
using ihe estimate for batch 14, with the differenee that the error variance has only
'l 1 degrees of freedom instead of 12, because one of the results is estimated. The
resulting analysis is shown in Table 3.7.

'table 3.7 Analysis of variance with one val.ue missing

Source of
Variation

Total T

Treatment A
(Blends)

B10ck R

Error e

Degrees of Sum of
freedom squares

fT=18 ST=27.57

fA= 4 Sa=21.96

fR= 3

fe = 11

2.10

Mean square
(variance)

VA=5.49  17.2姜 丼

VR=0・ 70   2.2

se = ).5'l Ve: 0.319

-15-



3.3 Latin Square

(t ) Introduction

In an experiment which is not divided into blocks the replicated treatments are
distributed at random over the whole of the experimental material , the heterogeneit,y
of the material together with the testing errors giving the residual (or error) varia-
tion. In a randomized block experiment the heterogeneity is controlled by applying
the treatments over compact blocks of relatively homogeneous material, thus reduc-
ing the residual variation and making the comparisons more sensitive. Under suit-
able conditions the exper:iment may be subdivided in more than one way, giving in
each case greater homogeneity.

Some examples a::e shorvn below.

(") An experiment on the weaving of cotton cloth. The purpose of this
experiment is to investigate the effect of sizing treatment applied to the
warp. The-. criterion is the number of breaks in the warp during weav-
ing. F'our warps, each with a different sizing treatment, are assumed
to be woven simultaneously on 4 different looms, which can be supervised
by a singie weaver. Then each warp is moved to a different loom of the
set so that after 4 periods every sizing treatment have been tested on all
4looms. If A, B, C, D represent the 4 warps, the Latin square used is
as f ollows:

Looms
Periods

4

I
II

III
IV

Ａ

Ｄ

Ｃ

Ｂ

Ｃ

Ｂ

Ａ

Ｄ

Ｂ

Ａ

Ｄ

Ｃ

Ｄ

Ｃ

Ｂ

Ａ

This arrangenent can
differences among the
differences among the
rveaving.

eliminate constant
looms, and also
4 periods of

(U) In the preparation of an explosive mixture usecl in primers, variation
may occur either in the mixing of the ingredients of the explosive or in
the process of charging. Suppose that one experiment of this type
includes 4 mixing-blending teains and 4 charging operat()rs. On ea<:h
day, the product of cach team is sent to a different charging operator,
the arrangement being changed daily according to ther folk>wing Latin
square .

Charging operalors
1234

Monday
Tuosday
Wednesday
Thursclay

Ｂ

Ｃ

Ｄ

Ａ

Ｄ

Ａ

Ｂ

Ｃ

Ａ

Ｂ

Ｃ

Ｄ

C
l) A, R, C and D represent
A the mixing-blending teams.
B

The Latin square analysis of variance enables us to isolate consistent
differences :rmongst the teams and consistent differences amongst the
charges, as well as day-to-day variation.

A rough rule for randomization is this: Having written down any system-
atic arrangement of the letters, rearrange at random the rows and colums;
then assign the treatments at random to the letters.

For ref inements, see the F'isher and Yates t s Table.
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(Z\ Layout ,,,'ear testing of textile fabrics

In a wear-testing machine with four positions the results obtained in the four
positions may vary apart from testing error, and comparisons between different
materials will be more precise if all are tested in the same position. This means,
however, that they can not be tested in the same run of the machine. There may
also be variation from run to run, and comparisons between different materials.will
be more precise if al1 are tested in the same run, in which case they cannot all be
tested in the same position. If the variation between runs or between positions did
not exist or could be ignored a randomized block design could be used, but in order
to eliminate both sources of variation from the comparison of treatments a more
elaborate design would be required. It is impossible to make every comparison,
say treatment 1 with treatment 2, in both the same run and.the same position, but it
is possible to ensure that each treatment is tested the same number of times in every
position and also in every run, provided the number of runs is equal to the number
of positions. The average response for eaeh treatment is then an average over all
runs and over all positions, and provided the position effect is independent of the
run effect aII the treatment averages are equally affected by the run and position
vari.ations. The relative values of these averages are thus unaffected and they are
estimated as precisely as if the run and position variations did not exist.

The arrangement of the trials to ensure that each treatment is tested once in
every run and once in every position makes use of the Latin S_quare. This is a
square containing m rows and m columns, and consequently m2 cells. Each cell
contains one of m letters, cor:respondi.ng to m treatments, and each letter occurs
once and .rn.o oi-ly in each row and each col-umn.

'fhe following is an example of an experinent relating to the testing of rubber-
covered fabric in thc. MARTINDALE wear tester carried out as a 4 x 4 Latin Square.
The machine consists of four rectangular brass plates on each of which is fastened
an abrading surface ct>nsisting of special-quality emery paper. Four weighted
bushes, into whi,ch t<:st samples of fabric are fixed, re.st on the emery surfaces,
and a mechanical device moves the bushes over the surface of the emery, thus
abrading the test specimens. The loss in weight after a given nurnber of cycles is
used as a criterion of resistance to abrasion. There are slight differenees between
the four positions on the machine, and it is known from past experience that if a run
is repeated under apparently identical conditions and using apparently identical
samples, slightly different results are obtained, ascribable partly to variations in
the emery paper and partly to variations in temperature, humidity, etc.

If samples of fabric are to be compared it is clearly desirable to eliminate
the effect of variation from one position to another, and from one run to another, as
far as possible. It could be assumed that the three factors, positions, runs, and
materials acted independently, so that if one position gave a higher rate of wear
than another it would do so in e'very run and on any material , and so on.

(f ) Data obtained

The experinent described involvcd four materials tested together in each of
four runs on th<: machine. 'fhese numbers were chosen because the machine has
four positions, so tlrat a l,atin Square design could be used. 'I'tre cntries of Table
3.8 denote ttre loss in weight (units of mg.) in a run of standard length, and the
Ietters A to D reft:r to the four materials.

Ｌ
聾
露
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Table 3.8  Results Of wear― testing experiment: Latin Square

From a simple inspection of the averages it appears that:

(l) Material B is best (Iowest Ioss)

(ii) Run 3 gives higher losses on the average than the others.

(iii) Position 2 is more severe than the others.

However, a statistical analysis is required to test the significance of these
apparent differences.

(+) Analysis of variance

Table 3.9  Code number u=(x-23.0)x10

Run Total (rotat)2

Rl

R2

R3

R4

Total

Total squared

Total

Total squared

18

43

51

32

324

1849

2601

1024

A 132

17424

B-24

576

C 16

256

D 20

400

144   5798/4=1449.5

仰μ48245:88

144-く1402ヵ 6二
留

6

18656/4=4664(I)A

′

・Ｊ

′

ｉ

Run
Position in lnachine

1           2          3          4 Total Average

1

2

3

4

B 21,2  A 27.O  D 22.7  C 22.9

C 23.5  D 23.9  A 26.3  B 22.6

D 23.4  B 24.O  C 23.O  A 26.7

A 25。 2  C 24.2  B 21.8  D 24.0

93.8      23.5

96.3     24。 1

97.1     24.3

9う 。2      23.8

Total

Average

93.3      99。 1       93.8      96.2

23.3       24.8       23.5       24。 1

382.4

23。 9

Total

Average

A105.2  B 89.6  C 93.6  D 94.0

26.3       22.4       23.4      23.5

382.4

23.9

Position in machine
Cl    C2   C3    C4

B -18  A 40  D -3  C -1

C   5  D  9  A 33  B -4

D  4 B 10 C  O A 37

A  22 C 12 B-12 D 10

13      71      18      42

169    5()41     324    1764

sum of square of all entires:

-18-
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Total sum of squares:

Sum of squares between runs:

s. s. between positions:

s. s. between materials:

Error sum of squares:

Degrees of
freedom

ST=(H)― CT=5502-1296=4206

SR=(1)R~CT=1449.5-1296=15315

Sc=(1)c― CT=1824.5-1296=528.5

SA=(I)A~CT=4664-1296=3368

Se=ST― SR~SC~SA = 156.0

Table 3. 10 Analysis of variance

Source of
variation

=m‐ -1=15

=m-1=3

=m-1=3

=m-1=3

=(m-lXm_2)=6

Sum of
squares

ST=42.060

SR=1・ 535

Sc=5。 285

SA=33.680

Se =1.560

Mean
square

VR=0・ 512    1.97

Vc=1.762    6。 78美

VA=11・ 227   〉40姜予

Ve=0。 260

Total T

Runs R

PositiOns

Materials

Error e

Ｃ

　

Ａ

fT

fR

fc

fA

fe

The value of F corresponding to materials greatly exceeds the 17/. level.
The design has been successful in eliminating a considerable amount of variation
assoeiated with positions which would otherwise have decreased markedly th.
sensitivity of the comparisons between materials.

(:) Least significant difference

I.s.d. = r (6; o.o5) 56

=2.447x =0.88

As for the loss in weight we can conclude that

(6) Estimate of missing value

The method of $ ).2 t9) may be used to estimate missing values.

For one missing value y and with the notation

R = total of known values in row (run) containing y

C = total of known values in column (position) containing y

A = total of known values in treatment containing y

G = total of all available values

m = number of treatments, columns or rows

then

y=―
・ 器 嵩 捐 十 分 |ヱ

⊆
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1'A(リ TORIAl,1'lXr)FitIMENTS AND SPIり lT~PI′ OT DESIGN

4.1

Trrecluentlv in.-st.'it.rttific inlcstigations, pa.rticulzrrly u,here an empiri.c-;rl erplir''r:it;lr
Itas Io ber adoptcrl , 1.;t'obl,.,it-ts irr:isr, in which tltc r--.ffccts ol'a numlrer <.lf rliffcrent l:i(,t-ors
ol1 So[l() l)ro[)i)rtv ()r lil'o(-(]s\ r','t1rri|t'to bt: evaltrated. Srrc]r ;rroblcms cltn rrsrrirll.','bt-'
ntost econonrir-:lllly irivoslig'alt'tl by arrarrging thr-. e.xperiments according to an rlrriert:d
plan in whi<:h irll tlrc f:r<:tor'-- arr, varied in a regular way. Provide.'d t.lrt: plan l-ras
br'ott r:orroctlv choscn, it i-< tht:n possible t6 6",.rmin<-'not only the effect of t:a<:h
incliviclrral f;rr:tor- bttt itlso tlrt' n'av in which each erffect derpends on ther otlrcr fac'tors
(i.t:. th<. [nterar,tions). ']'lri: niirtir,s it p<-rssiblt: to obtail] il tr]or'(] comtrrleto pictrrr()
oi'wllat is happenlng than n,ould lro obtaint,'cl by varying t-'ach of titr factors ono ilt ii
tinrc: rvhile l.oi:ping t.iic olltt,t's r:onslant. Designs of tlris s()rt, lrr()i'c)ova)r, lenrl thent-
5r'lvcs rtell to sialistit'l1 .rniilrsis antl t:an if roquirt'rl provi<lo tlrt:ir orvn cstimatr:s ol'
expcrimc'nl:rl r:rr'or. [n t.lris fir:.ld tht> dcsi6ln and the analysis of the results arc
<,:losolv linl<ertl , arrd rrnltlanrrorl cxlrr-rirnr.lntal w()rk is liable to confuse the effects
s<luglrt in slrt'Jr it \\, lv th,irl rnrrtlr ol'l.lrt-,infornratiorr lr'lrir:h r,r,orrld othcrwise be availabl<;
is sac rif i<:t'rl .

4.1

'['lr1 rl:rla giyr',1 in l';rhlt. 'l .1 ;rrt. taly::r fr-om [lr1 rr.srrltS of :pr itrvc'*etigation.into
tlr,'e 'il','t'ls on tlrr. irlrr,<ir'"t'l pr'o[)r'r't.ir.s of l'ulcarliz€'c] r'rrJrtrlr of varyinL a rrrrml:er of
lll. 1o,'s, ilr,' [)]'(rJ)(rI'l): r'(1('r.)l-(1,'<l lte'il{{ thr-' tr,r'a.r- rt'sistilnr.t,, o!' tlr,' sarn1tlcs, atrd tho
{'rr,.l r, r-< lr,' i r',r.

,\ : tii,,' <lrttliljt's of l ill,'r'
tl : lltlt:t. nx:l.l'torls of prtltr(,'attrx)nt of tlt(, r-rrl.ri-r,.,r'

(. : lolrr <lualities of thc raw rubber

■
｀ablo 4.1 I)ata of a 5xlx4 far:tc.rial t'rprt'rirrr,.,ut

(',Vtrar rosistanco of vulc:rrn i:zt'cl rllbbor)

r>f l':r<rlor^ ( l

Lclr'l r>f

f'actor ;\
B1  32 B3

■()4  478

3′ )2  418 431

2つ 1

198

Notc tlrat., i.rs itlu'avs itr et

lc vr. ls <;f thi'- cl if fe r-cnt f .r"tc. -s

,へ
|

′ヽ ,

523 31(,

lメ :(5

3りり530 381 182  55()

496

33()

255

l.1｀

:97

('ompl()te f:rt-'tt., r' ilr
ar -. 1 .s'ed.

15}{

1(11

311

■7`|

1(bi

ilosigrr, ;rll <'onrlrinillions of l.hc

B 1 I]: I]l B1 B.: rr: i r] 
r

4.

251 21('

(14
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Al

A2

A3

A4

A5

Table 4.2 Two-way table of sums for factors A and B

Sum

5,287

3.845

4.580

3.153

2.218

19,083

Table 4.3 Analysis of variance

766,297

478,463

52,794

150,239

16,807

53,890

6,416

7,688

119,616

26,397

50,080

2,101

4,491

1,069

Mean

440.6

320.4

381.7

262.7

184.8

318.1

374   姜半

82.5 美姜

156   姜姜

6.57姜姜

14.0 美■

3.34 キ

Sum

Mean

Source of
variation

Total

Main effects A

B

C

Interactions AB

AC

BC

Remainder=interaction

ABC

59

4

2

3

8

12

6

4,3 Split-Plot Designs

In factorial experiments, it is often desirable to lay out the levels of one factor
in relatively large units (or whole plots) designed as a randomized block, Latin
square, or other design, on account of the following circumstances:

(l ) By necessity: The very nature of the levels of this factor may be such as
to exclude the use of small plots or units.

(Z) By design: The experinenter may know that the levels of this factor
usually differ in yield, and he can forego precise informa-
tion on this factor.

Since the 'whole plots' are large by necessity or by design, it may be desirable
to compare levels of another factor on each (smaller) plot, the several levels being
allotted to the split*plots or sub-units of each whole plot at random. Such an ar-
rangement is called 'split-plot designr, and is a typ,e of factorial arrangement, in
which the main effect of one factor is completely confounded with whole plot differ-
ences.

1.524        1.765       1.998

1.227        1.292       1.326

1.348        1.444       1.788

920        1.108       1.125

633          718         867

5.652        6.327       7.104

282.6        316.4       355.2
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The whole plot treainients as well as the split-plot treatments may themselves
represent a factorial al:r'angement. The terminology 'wholer or tsplit-plott treat-
ment does not necessarily refer to the levels of a single factor.

Numerous examples of factors which require large experimental units are
available in all fields of research. A few of these are listed below to illustrate
the diversity of material for u,hich split-plot designs are suitable.

(i) In field experiments on varieties or fertilizers on small plots, some
cultural practices with large machines may be tried on whole groups of
the smaller plots, each group containing all the varieties. Irrigation
is one such practice that demands fairly large areas per treatment.

(ii) In greenhouse temperature studies, it may be necessary to keep the
entire greenhouse at a constant tempefature. Several treatments may
be conducted in the greenhouse, but the greenhouse is used as a unit.
Heat chambers, storage cellars, freezing units, baking ovens etc. ,
must also be utilized as a single experimental unit.

(ili) The smallest unit in some plant-response studies is a single plant, but
the plant may be subdivided into subsamples to study the methods of
chemical analysis to determine plant composition.

(i") In the preparation of metal alloys a smelting or blast furnaee requires
large amount of material, whereas some treatments, such as types of
mould, require relatively small amounts.

(") In experimentaL education a movie film may be used by several teachers
and on several sets of students; the film is a single experimental unit as
far as replication on the film is concerned. Perhaps replieation on
films could be obtained by filming the material on different types of film
under different conditions, by different operators and cameras, etc.

Randomization

(t) The randomization procedure for the units (or rvhole plots) is determined
by the particular design chosen, sueh as a randomj.zed block, Latin square
or others.

(Z) Randomization of the sub-unit (or split-plot) treatments is newly done in
each whole plot.

,A consequence is that the experimental error for sub-plot treatments is differ-
ent (characteristically smaller) than that for whole-plot treatments.

5. INCOMPLETE BLOCK DESIGN

5.1 Introduction

The principles of designing experiments for comparing a number of treatments
when uniform conditions can be maintained wit.hin blocks of observations, each
accommodating one replicate (or the same number of replicates) of each treatment,
were discussed in Chapter 3. Sometimes experimental conditions wiII not permit
blocks large enough to include every treatment, so that all treatments cannot be
tested under uniform conditions; nevertheless, by suitably designed experiments,
valid and efficient comparisons between the treatments can be made without being
disturbed by the differences between the blocks.
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,,2 Balanced Incomplete Block Designs (BIB)

(t ) Simple examples:

(i) v=4rk=), b=4, T=3, )=2,e=89%

Block (r) 1 2 3
(z)124
(r)134
(+)234

(t) v =7, k=3,b=7, r=3, l=1, e=78y',

Block (t) 1 2 4
(z)23i
(r) 346
(+) 457(r)r61(o) 6r2(z)r13

(2)

(i)

(li)

Fundamental relations

vr = bk where

λ =
r(k-1)
V-1

among parameters:

v: number of treatments
k: size of (incomplete) block, ('= ',, )
b: number of incomplete blocks
r: number of repetitions of each treatment
tr: number of times (an integer) a treatment

occurs with each of the other treatments
within same incomplete blocks.

Note: This relation (ii) demands that tr should be equal for all pairs of
treatments and be equal to an integer.

The efficiency factor, e, is definedas the fraction of total information
contained in intra-block comparisons when inter-block and intra-block contrasts
are of equal accuracy, and is equal to

liiil e=畔 =糾
ｖ

λ

一ｋ ｒ
〓

6. FRACT10NAL FACTORIAL DESIGN BY USING ORTHOGONAL ARRAYS

6.1 Introduction

A complete factorial experiment, in which all possible combinations of all the
levels of the different factors are investigated, wiII involve a large number of tests
when the number of factors is large. Thus an investigation of five factors each at
two levels will entail 2> .= )2 observations , each under a different set of experi-
mental conditions. An experimenter might well consider 32 observations excessive,
even after consideration of the advantages of the factorial design given in $4. [n
any case the experimenter may not require the high degree of accuracy in the esti-
mates of the effects given by the complete factorial design, and he may be satisfied
from prior knowledge of the process or similar processes that many of the inter-
actions, particularly the higher-order ones, are not appreciable and moreover he
may already have a sufficiently reliable estinrate of the experimental error. Even
when an experiment of this magnitude may eventually be required he would prefer to
carry out the work as a series of smaller experiments.
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The object of Fractir;nal Factorial Designs, sornetimes called Fractional
Replicates, is to obtain inf ormation on the main effects and as many of the inter-
actions as seems necessary n'ith a smaller number of observations than is requiied
by the complete design. Caru-ful consideration of the best combinations of experi-
mental treatments is needed, and the theory brings out in detail what becones of the
interactions neglected in any particular design, and what are the results if, unex-
pectedly, they are not negligible in reality.

There are two approaches to the problem of obtaining a suitable design in any
particular case. We may begin with the full factorial design appropriate to the
number of factors to be invesiigated, and by equating (or eonfounding) interactions
which are likely to be small or unimportant vrith one another and with other inter-
actions considered worth r.reasuring we can arrive at a design in which all (or
almost alt) of comparisoils are made between effects likely to be important. The
number of observations needed will clearly depend on the number of such compari-
sons. If , for instance, an experimenter wants to estinrate all the main-effects and
all the first-order interactions (tnat is: two-factor interactions) of ten factors each
at two Ievels, the number of main-effects and of first-order interactions being 1O
and 45, respectively, it follows that 1 f16 fractional replicates of 21O factorial
design could be suitable, which requires only 64 tests in all.

Alternatively, wc. may tregin with the full factorial design corresponding to a
number of factors smaller than is actually uncier investigation and substitute the
remaining factors for those comparisons which measure effects considered unlikely
to be appreciable. This procedure can be easily followed by using specially
devised rrTable of Orthogonal Amaysrr given belovr-.

The types of investigations considered in this chapter are those in which the
experimenter requires to know the behaviour of several factors over a defined
range for each, beginning with two Ievels only. There are many investigations in
which we wish to compare two conditions only of each of a number of factorsr €.9.
two different qualities (crude and purified) of one or more of the materials used in
a process; high and low agitation rates, these rates being restrj-cted by the design
of the plant; two different <iesigns of fi.lter presses or filter cloths; two different
units of a plant; slow and vigorous reflux conditions; two different solventsl and so
on. Fractional replication of 3n factorial designs is also considered.

The use of fractional fact.orial designs has now become widely accepted as an
efficient way to carry out experiments involving a large number of factors. However,
one of the difficulties in aciopting fractional factoriaL experinents is that it is neither
easy nor feasible to compute the estimates of all the factorial effects and to obtain
the indispensable analysis r:f variance table on desk calculating machines. But,
now, with electronic computers, it takes only a few minutes to complete the neces-
sary computations for each character obtained from such exper:iments of moderate
size. Thus the specially devised I'Table of Orthogonal Arrays" and the data pro-
cessing on electronic computers have made it quite easy for the industrial research
workers in Japan to use various types of fractional replicates of 2n and 3n factorial
designs.

6.2 DesiEn for 3 factors in 22 observations

The basic principles and methods of construction of fractional factorial designs
can be explained very simply by means ol a22 design. Denoting the factors by A
and B, the lower level of each factor by - and the upper level by +, the four combi-
nations of the factor levels constituting the complete design may be represented as
in Table 6. 1 .
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は⇒

+

+

+

十

十

■

Observation Treatment
combination

Table 6.1

Notation for 22 Factorial designs

The fourth eolumn is added for a purpose shown later. The first observation,
denoted by - -, involves the lower levels of both A and B; the second observation,
denoted by + -, involves the higher level of A and the lower level of B; and so on
for the other two observations. In the other notation, wtrere the levels of factorA
and B are denoted by (1), a; and (1), b respectively, the 4 e 22) possible treatment
combinations, i.e. the combinations of the factor levels, are shown respectively by
(1), a, !, and ab. The sign notation for indicating levels of factors and treatment
combinations is a convenient one, and is also appropriate to applyto the correspond-
ing observations to calculate the main effects.

Thus

the effect of A at lower level of B: YZ - Yt or a - ('t )

the effect of A at upper level of B: Y+ - Y3 ab - b

Iv{ain effect of A (average): 1/2 (yZ + y4 - V1 - y3)
or 1/zla+ab-(1)-b]

In the similar way,

1/?(Yj+Y4- 11 -Y2)
1/2 \b+ab-(1)-"J

These represent two of the comparisons between the four observations; the third
comparison is obiained as the difference of the effect of A at lower level of B and
that at upper level of B, yielding the interaction AB; and the signs given in the
fourth column of Table 6.1 are simply the products of the signs for A and B, so
that

Interaction AB: 1i2 I $4 - yt) - (vz - vr)) = t/z (u, -y2- y3 + ya)

: 1/2 { ("u-b)-("-(r))} =ri, t(r)-a-b+ab}

Assuming the two factors A and B do not interact, the comparison represented
by AB will be zero, apart from experimentaL error. It is then possible to utilize
the AB comparison to measure the effect of a third factor (provided, as shown later,
that the third factor does not interact with A or B). Denoting the additional factor
by C, we I'equatert C to AB in Table 6.1, and the signs then give the levels of
factor C. This results in the design of Table 6.2 for measuring three factors in
four observations.

Main effect Of B:

Or
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A B C (=AB)

+

+

+

+ +

Table 6.2 Oc,sign for three factors in four observations

reatmentObservation
combination

Y1

Y2

Y3

Y4 Ｃ

ｃ
　
　
ａ

　

ｈ
）
　

ｈ
）

ａ

The main effect of C is

t/z(v., - y2-y3 +y4) or 1f2 { " - " -b+abc}

Using the comparison representing interaction AB to measure a main effect C is
referred to as frequatingt' C to AB.

Another design exists for three factors in four observations, obtained by
equating C to -AB. The design is similar to that of Table 6.2, but with the signs
of column C reversed. Both are half-factorial designs and the two^together com-
prise the complete factorial design of three factors at two Ievels (2J). The treat-
ment comdinations for the two designs are:

Design 1 ( C

Design 2 (C
AB): c, a, b, abc

-AB) : (t ) ac bc ab

It is interesting to note that the difference between the two designs represents
the three-factor interaction ABC, which is given by

InteractionABC- l/q\ a-r b+c+abc -(f)-ab-ac -U"J'r)
Important relationships are apparent upon inspection of Table 6.2: the fact that

C has been equated to AB is shown by the signs of column C being the products of
the signs of A and B, so that the comparison measures C rvhen AB is zero. We see
also that the signs of A ar:e the products of B and C, while the signs of B are the
products of those of A and C. It follows, therefore, that:

The four treatment combinations of Table 6.2 may be used to
estimate three main effects provided all iuteractions between
them are zero. or may be assumed negligible.

In general , thr: factors A, B, and C may or may not interact, and therefore it
follows that:

After equating C to AB in a 22 design, the comparison measures
C r AB, and the other comparisons measure A + BC and B + AC
respectively. Similarly, after equating C to -AB, the comparison
measures C - AB, and the other comparisons measure A - BC and
B - AC respectively.

6,3 Construction of L4 and Lg Tables of Orthogonal Arrays

Our L4-Table of Orthogonal Amays is only a version of Table 6.1, where the
signs + and - are replaced by 1 and2, respectively, turn it upside down, and the
first two columns headed by Level cf factor A and by that of B are interchanged,
the result being shorvn in Tab1e 6.3.
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Arrar- \umber:
(1) (2)(3

ヽo.o
.-rbservation

Ti'ible 6.3 L4 - Ortirogonal Arravs

１

２

３

４

Array
label

(lrotlp

Numbor

a       c      a
0

l     l     _

1              2

A
B    (｀

A
(I

B
(｀

|

l'irirl,, (r.5 Lg-{)r'tito5r;<irtirl \ r-l'ir.\ fi

'J'lre <-n'igine; irrltorial e:ffocts of 22 rlt:sign si: r,n iu'ftrblo (r.1 is rr',ferrcd l.<t

tirc ttamirl' lirbei'' iiir,'u by tht corrr:sponding ':,.r.;:]l' lette.rs at tlxr b<lttom of each
of ;rrravs. '( i,pitiri' k'tto-r's ax' lt-'ft to inclir'irt,' ti:,. iiictorial elfccts of ;r particu-
lar frtrctit-rrt:tl fi.ctorial expet'irnent, rvhicit ilrr ti: L',,- assignecl to tlr<.r arrays of the
L 1-'l'arbtc .

In ttrr. sinriiirr.'\\a\', \\(! can r-'asil'y corrslri:(t l-*-(irti:,,tlirlrt Artols fronr th*: l3
fat'torial rlt,sigrr. rrs slron,n in '1'able 6.4 antl b. i.

Tabl()6.4 N()tation fく ,I ]ブ 「‐lt t′ ri〔 :1(l〔 、ヽi押 l、

I,'.ctorial <,f {'r-,r i s
No. ol'

trbst rv itti ott

0. Of

observat i on

l

〕

4
5

6
7

8

A t- raty
lavcl

( irorrl;
nutnbo r

Ａ

Ｂ

Ｃ

'l ' r'c'at nrc n t
<'orrrbinat ion

１

２

３

４

５

６

７

８

(r )
a
b

:r l-r

(:

il(_'

[>c

a lrc

{い )   (7)
・
―

“―

●

一　

１
一

，
一

，

一

‘
１

１

，

４１

，

〕

，

一

１́

＞

一　
‥１

１
，

、
４

ｂ

　
ｃ

(1

b
C

3

rray 111111,(｀ :｀

― ■7 -

一
　

―

　

一
　

‐



The orthogonal arrays given in the above tables are conveniently used for
getting the necessary treatment combinations in any fractional factorial designs in
4 and 8 observations, if the factorial effects required are assigned to the appropri-
ate arrays of the table. The 'group numberr at the bottom of the table is useful in
finding arrays, to which factors in split-plot designs are assigned, because the
figure 1 or 2 in the amays with tgroup numberr 1 to 3 appears in groups of 4, 2
and 1.

The notation of the Table LgQT) shows that:

(t) L is the capital letter of Latin Square, indicating that this orthogonal
property comes from Latin Square

(Z) this tabte is used for any experiment of 8 observations

(f) it has 7 orthogonal arrays, the number corresponding to the total degrees
of freedom for 8 observations

(+) aLl factors applied to this experiment are those at 2 levels.

The torthogonalr property means that:

(f) every array has the same number of 1 and 2. (+ for f.g)

(Z) every pair of arrays has the same number of the combinations (1, 1),
{'t, z), (2, 1), and (2, z). (z ror L3)

6.4 Design of 8 observatlons (Lg)

Designs of 4 observations cannot cope rvith more than 3 factors because three
factors exhaust a]I the independent comparisons betrveen the four observations.
The next larger fractional factorial design of the kind discussed above is one of
eight observations. A design of this size can usually be carried out without
serious practical difficulties, even with complex industrial processes.

Eight observations are sufficient to supply estimates of all main effects and aII
interactions for a complete factorial design with three factors each at two levels.
Three main effects denoted by a, b and c, three-two-factor interaction by ab, ac
and bc, and one three-factor interaction by abc are given as "array labelsl at the
bottom of the arrays, respectively.

If the three-factor interaction ABC may
relevant comparison may be used to examine
the array labelled by abc of Table 6.5.

The design is as Table 6.6.

be assumed zero or negligible, the
another factor D by 'equatingr D to
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ヽ o.C
test

Array Number
1 ) (z) (r) (+) (l) (o) (z)

Treatment'
combination

１

２

３

４

５

６

７

８

１

１

２

２

１

１

２

２

１

２

１

２

２

１

２

１

１

２

１

２

１

２

１

２

１

９
一

，
７

１

，
７

１

１

９
一

abcd
ab
ac

ad
bc
bd
Cd
(1)

Array
label

a b ａ

ｂ

C ａ
　
ｃ

ａ

，Ｏ
　
ｃ

ｂ

　
ｃ

Factors
assigned

A B C D

Table 6.6 Design for four factors in 8 observations - Lg Q7)

This table represents one half of a 24 factorial design, and it is therefore a
half-replicate. In an investigation of the conditions of polymerization process of
synthetic resin the object was to improve the strength of product. Four factors
were examined:

A: percentage of additive agent: \ = 6%, AZ = 5%

B: speed of agitation:

C: percentage of catalyser:

D: supplier of raw material:

B1 = 20r.P.E., BZ= t5 r.p.m.

(r.p.*. = rounds per minute)

Cl=1.0%,

Dl

C2=1・ 2/.

D2

It was considered unlikeiy that there would be large interactions between these
factors, and as a first step it was decided to examine them in eight observations,
i.e. by means or Lg (2/)-Table. The comparisons obtained from the arrays No.(3),
(5) ana (0) in Table 6.6 were considered to measure the effects caused by experi-
mental error. Randomization of the order of testing these eight treatment combina-
tions was indispensable. The resulting experimental plan and the data are shown
in Table 6.7.

'f able 6 . 7 Experime ntal PIan

ata x
coded value

１

２

３

４

５

６

７

８

７

４

５

０

０

１

１

６

１

１

　

　

２

　

　

２

4   1 6%    15 rop.m。     1.2%      1
7 | 5% 15 r.p.m. 1.oy', 1

2 | 6/, 2o r.p.m. 1.2y', 2

5 | 5/" 2o r.p.m. 1.o/" 2

1    1 6%    20 rop.m.    1.0%      1
8   1  5%    15r.p.m。     1。 2%      2
6   1  5%    20r.p.m。     1.2%      1
3 | 6% 15r.p.m. 1.o/, 2
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6.5  Statistical analysis

There are severalマvays of calculating the eFFects and variances.  The most
straightfOrward way is to write the data in standard order and calculate the differ―
ence oF the two sums; lor the first level and for the second level, as shown in Table
6.8.

Table 6.8 Calculation of effects and variances

0. ata
x   x2test

1

2

3

4
5

6

7
8

sum for the first
level

sum for the second
level

difFerence(d)

efFect(d/4)

variance(d2/8)

20  400
5   25

26  676
17   289
0    0
1     1

14  196
1     1

84 1588

52  -32

13   -8

338  128

-4

-1

2

36

9

162

12

3

18

20

5

50

Yates has developed a systematic tabular method which is particularly conven-
ient when there are four or more factors. ffrite down the treatment combinations
and the observ.ations in standard orderr as in the first two columns of Table 6.9.

Table 6,9 Calculation of effects and variances by Yates's method

x (l)/8, average, *x correction factor = (totat)Z /8

Array Number
1)  (2)    (3)    

‐
(4)   (5)    (6

1

1

2
2

1

1

2
2

1

1

2
2

2
2
1

1

1

2
1

2

1

2
1

2

1

2
1

2
2
1

2

1

１

２

２

１

１

２

２

１

１

２

２

１

２

１

１

２

No.of
te st

Data
(o) (1) (2)    (3)

eFFect    SiS・ =

0ソ4 葛Te
l     abc
2    ab
3     ac
4    a
5     bc
6    b
7     C
8  (1)

20
5

26
17
0
1

14
1

25    68    84・ i total

43     16     36=4C
1     24    -32=4B
15    12   -8=4 BC=e
15  -18   52=4A
9   -14   12=4 AC=e
-1    6   -4=4 AB=e
13   -14   20=4 ABC‐ 4D

(10.5)姜     882キ美

9.0      162
-8.0      128
-2.0        8
13.0      338
3.0     18

-1.0        2
5,0     50

160 Tota1   1588

-3()一

68   26

16  58

２

　

　

　

２

５

　

　

　

３

８

　

　

　

６

３

　

　

　

４

８

　

　

　

６

４

　

　

　

３

０

　

　

　

４
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２
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４
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The column marked (t)ls derived from the data column nsrked (O) 
"s Iollows.

Tne first entry in column (l)is tfre sum of the first two data (ZO + S); the second
:atrv is the sum of the second pair of data (26 + 17); the third and fourth entries
are the sums of the succeeding pairs (O + t), (14 + 1) respectively. This completes
ia: top half of column (1 ). The lower half is derived from the data column by taking
::-: differences of the same pairs, the second from the first in every case. Thus
..-: fi.rst entry in the lower half is (ZO - f ), the second, (26 - 17), and the other two

- 1), (t+ - t). Column (z) is aerived from column (t), ana column (l) is derived
::'cm column (2), in exactly the same way as column (t) was derived from column (O),
:i- summing and differencing the pairs of values. These operations yield exactly
:ie same figures as have been calculated in Table 6.8. The actual effects are then
:btained by dividing the entries in column (f) Uy +. The number of operations (i.e.
:clumns) of summing and differencing is equal to the number of factors.

The seven effects, A, B, AB, ....., ABC from 23 factorial design invotve
seyen independent comparisons between the eight observations, and the capital
.slters showing these effects are given in the column (3) of Table 5.9, correspond-
-:g to the second level of amays a, b and c, and according to the assignment of the
actual factors to the array labels (given in Table 6.6) we can easily identify the
lactorial effects concerned. Since each of the quantities in column (3) of Table 6.9
is the algebraic sum of eight observations (in fact a difference between two sums of
four), the sums of squares (equal in this case to the respective variances, there
being only one degree of freedom for each effeci) are obtained by squaring the cor-
::esponding quantities in column (3) anO dividing by 8, yielding identically the same
results as those obtained by the method usually given for analysis of variance.
These quantities are given in the final column of table 6,9. Their total including
correction term is 1 588, which should agree with the raw sum of squares for the
column (O), viz. :

Raw sum of squares = 2o2 + 52 + 262 +'t72 * 02, 12 + 1+2 + 12

= 1588

This check is usually sufficient, since compensating errors are unlikely to occur.
-A more detailed check on the computation is to use the fact that the sum of all the
figures in the column (3) is equal to 8 times of the first data (a x ZO = 160).

It is convenient to present the statistical analysis in the form of Table 6.1O.

Table 6.10 Analysis of variance of Table 6.9

Source gress cf Sum of Variance
variation freedom ares

T otal

A
B
C
D

error

706
338
128
162
50
28 9.3

36.3美 美

13.8X
17.4X
5.4

Combining three sums of squares for the arrays (:), (:) anO (6), we obtain an
::::nate of error variance of 9.1, based on three degrees of freedom. The 5y'" and.-' :-alues of F for f 1 = 'l , f2 =.3 are 10.1 and 34.1 respectively' so that the effect
:i :ercentage of additive agent A is highly significant; those of speed of agitation
,:-. rf percentage of catalyser are significant at 5y'o level, and the difference of sup-
:.:::.s of raw material is not significant at 5y', Ievel, and in further experimental
r.:r'k on this process this factor may be disregarded.
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The actual magnitudes of the significant effects are (see Table 6.9):

Effect of increase in percentage of additive agent A = 13.0
Etfect of decrease in speed of agitation B = -8.0
Effect of decrease in prcentage of catalyser C = 9.O

The condition fcr maximising the strength of product is then recognized as
At BZ C1 (i. e. 6% a,Jditive agent, 15 r.p.m. and 1 . O/" catatyser) and the expected
strength'under this t <indition is estimated by

(eFfect oF Cl)

+ マ声 X9。 0

6.6 Confusion of effects in a fractional design. Aliases

Assuming that interactions of all orders are real , it follows that in a half-
replicate each effect is confused with another effect, that is, the effects occur in
pairs; in a quarter-replicate the effects occur in sets of four and each effect is
confused with three others; in a eighth-replicate the effects occur in sets of eight,
and so on. The effects which are confused in this waJi are termed ALiases. It is
clearly imperative to determine the aliases for any proposed fractioiffiign in
order to avoid confusion of important effects. These aliases ma1' be found from the
assignment of the effects to the orthogonal arrays by multiplfing the "array labelsil
in all possible ways and grouping the effects neasured by the samc'comparison, that
is, which are assigned to the same array. Applying these procedures to Table 6.6
gives the results shown in Table 6.11 .

Table 6.11 !'actorial effects of 24 assigned to orthogonal arrays

Array Number

Array

(are..g") (effect of A1) (effect of 82)

10.5 , +x13.0***(+8.o)
_ 25.5 ,

which is quite close to the value of the No. 3 test.

EfFects assigned
(Table 6.6)

Effects assigned
(alternative
design)
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Ｃ
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Ｂ

Ｃ

Ｄ
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I: should be noted thar in the multiplication of array labels the porver.is obtained
:,:-ar"y system (tnat is, mod. (Z)); for example

axabc =a.Zbc = aobc =bc

abxbc =ab2c - aboc =ac

It is also possible to systematize the method of obtaining aliases.because all
sets may be obtained from the defining_9931!gg!s. For this example, the defin-

'contrast is

I - ABCD

!'--".:'Flving successively by A, B, C, etc. ,
': .' ' . This result is perfectly general for

yields the above aliases given in Table
all fractional designs, and leads to the

The ellects confused with any given effect in a fractional design are
cieri.ved by multiplying the defining contrasts by the given effect.
The ilhole set of comparisons is derived by multiplying the defining
c l:rr rasts successively by the main-effects, two-factor interactions,
erc, until aIl the effeets have been accounted for.

-:-:::-s design we also note that all the main-effects are aliased with only three-
!,:r:: rnteractions, and any two-factor interactions with another two-factor inter-
a.::cn. Therefore, if all three-factor interactions are negligible, this design can
::reasure all main-effects A, B, C and D. And moreover if all two-factor inter-
z::::.s of D with A, B and C were zero, the two-factor interactions AB, AC and
=l :::id be evaluated by this design.

-{r the bottom of Table 6.11, the alternative design is given, where the array
: - ;;lich the factor D is assigned is'No. (O), being different from the original design.
i::his design, all main-effects exeept A are confused with some of two-factor
.:leractions, and hence this alternative design is not better than the original one.

The follorving assumptions and principles are usually kept in mind for construct-
:iq lractional factorial designs:

(t ) -A,11 three-factor interactions (and also interactions involving more than
:i=ee faetors) are considered negligible.

(Z) r\lI main-effects should be estimabte (tfrat means: they should not be
aliased rvith other main-effects ncr with any two-factor interactions).

il) To maximise the number of estimable two-factor interactions. (That is:
: a:-lactor interactions u,hich are not aliased with any other two-factor interaetions).
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