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DESIGN OF EXPERIMENTS

1 SIMPLE COMPARATIVE EXPERIMENTS

1.1 Description of the Experiment

The experiment was required to test whether or not treatment with a certain
chlorinating agent increased the abrasion resistance of a particular type of rubber.
The experimenter took five test-pieces of the material and divided each piece into
two. One half was treated and the other half was left untreated, the choice which
half of the specimen should receive the treatment being made by tossing a coin.

The abrasion resistance of the five pairs of specimens wewe then tested by a
machine, the specimens being taken in random order. The five differences, abra-
sion resistance of treated specimen minus abrasion resistance of untreated specimen,
are shown in Table 1.1,

Table 1.1
Test-piece Treated Untreated Difference Test-piece mean
1 14.7 124 2.6 13.40
2 14.0 10.9 3.1 12.45
>3 16.2 14.5 1.7 15,35
4 10.2 9.3 0.9 9.75
5 12.4 11.2 1.2 11.80
Mean 13.5 11.6 1.9

The mean difference (¥ - 1.9) was positive, suggesting that the treatment had
been favourable, but much variation occurred in the individual results. In order
to decide how much confidence could be placed in the apparent improvement a test
of significance was made. The appropriate test is the ¢ ~test, which will be shown
in 1.3.

1.2 Test of Significance

In this place, we notice only the signs of the differences in I'able 1.1 and find
that all the five differences are positive. Based on this information much, how
could we draw inferences? The statistical test follows as shown below:

(1) The hyvpothesis it is desired to test is decided upon. The observer wants
to find out whether there is probably a real difference, and to do this he considers
whether, in the light of the experimental results, the hypothesis that there is really
no difference is tenable. In statistical terminology this hypothesis of no real dif-
ference is called the Null Hypothesis H;. Under this Null Hypothesis it is recog-
nized that the probability p of getting the positive sign of the individual difference
is,

(1.1)
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(2) The information of the separate measurements is roplaced by a single
criterion, and is calculated the probability of drawing a more discrepant sample
from H(, than the actually obtained data, provided that the Null Hypothesis is truc.
In this particular instance it is seen that the chance of obtaining these five positive
signs is,
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(3) A decision is made whether the departure from Hy indicated
is such that this hypothesis must be abandoned. Working intuitively,
would have to decide this from common sense and past experience. Ex
treme instances he would find it very difficult to do this.

(i) If the probability thus obtained is negligibly small, say less thaz 3% -r

that a real increase has occured will be accepted. In doing so, h=
faces the possibility that he is wrong. Such is the kind of risk alwavs
run by those who test hypotheses and rest decisions on the tests.

(ii) If the probability thus obtained does not show an unusually small value,
the observer would not likely reject Hyp. Of course, he may be in error,
provided that Hg is not true. But the discrepancy, if any, is so small
that the data have given no convincing evidence of rejecting Hq.

In this example, the experimenter could reject the Null Hypothesis and state
that the treatment had increased the abrasion resistance, with the risk of about 3%
that this statement might be wrong, because this sample might be one of those 3 per
100 samples which were expected to come to hand even when ti, is true. This
probability is usually called "level of significance" because it signifies rejection.
Of course, we might not reject Hy and put off decision till obtaining the further data.

1.3 Test of Difference in a Paired Experiment ( { —test)

We are now taking into consideration the differences themselves given in Table
1.1 and performing the ¢ -test, which involves a comparison of the mean difference

with its standard error. The procedures are shown in Table 1.2 and below.
Table 1.2
Difference Code a2
& u=(X-2.0)x10
2.6 6 36
3.1 11 121
s -3
0.9 -11 121
1.2 -8 64
17 =22 351
I_H_J -5 = CT
Ty = -5 S = 346
r=2.0+(-1)/10 T o i $,2 =346,/4=186.5
- CT = (-5)2/5=5 s> 86.5 102-0.865

(1) The Null Hypothesis Hy is p ~ 0, where u denotes the population mean
difference. It is assumed that the observations may be regarded as representing
independent drawings from a normal distributed universe having mean 1.
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(2) The data reported in Table 1.2 are summarized by the following two values:

Mean difference: x

B9

Variance:. s2 0.865

1]

From these the standard error of the mean X is obtained as,

Standard error of the mean :/ 52/n = / 0.865/5 = 0.416

Then we calculate the quantity { , known as 'student's' { , the distribution
of which was discovered by W.S. Gosset in 1908 and perfected by R. A. Fisher in
1924 as,

deviation of the estimated mean % from U
standard error of mean x

= (x-w//s?/n

when we can replace O for p under Hj.

t =

=(1.9-0)/0.416 = 4.5T ivvvenerenennee. (1.4)

(3) 1Is this an ordinary value of ¢ in sampling from a normal population with
p =0, or is it so unusual as to cause rejection of the Null Hypothesis?

The distribution of ¢ is laid down in ¢ -table. In the case of large sample,
it is practically normal with u= 0 and the variance 0 2 = 1. Like the normal dis-
tribution, the t-distribution is symmetrical about the mean, which allows the proba-
bility in the table to be stated as that of a larger absolute value, sign ignored.
Entering the ¢ -table with the degrees of freedom equal to four (or in general one
less than the number of differences), it is found that the appropriate 1% significance
point is 4.604.

The value of £=4.57 is therefore significant at the approximately 1% level
and the experimenter could conclude that the treatment probably yiclded a real

increase in abrasion resistance.

1.4 Interval Estimation

In the above example the hypothesis that the true mean difference in abrasion
resistance between treated and untreated specimens was zero was rejected by the
¢t -test. The argument was that if p denoted the true mean difference, then in
repeated experiments the statistic,

(_{’-p)/‘(s_ﬁ) ....... 5 BTE S 8 Bk S R AT T (1.‘3)

would be distributed to a sufficiently close approximation as the tabled quantity /.
When p was put equal to zero, the value required by the Null Hypothesis, the ratio
equalled 4.57, a value which would be expected to be equalled or cxceeded nearly
once in a hundred times: the hypothesis that =0 was therefore rejected. This
same form of test would be equally appropriate to test the plausibility of any other
postulated value for u. Suppose it was decided to make the test at the 57 level,
then since from the ¢ -table, /has a 5% chance of lying outside the limits +2.776,
those hypothetical values of u which made (1.9 - p) /0.416 fall outside the limits

1 2.776 would be rejected, that is to say, those values of u falling outside the limits
7.90+1.15. It can then be said that at the 5% level of significance the observations
are consistent with any value for the true mean difference plying between 0.75 and
3.05, but that values for u outside these limits are contradicted by the data. This



argument is due to R.A. FISHER, who called these limits the Fiducial Limits.
In general, the fiducial limits for p would be,

55_+_t(f;_a:) s/,/T 21 hrend 68 & Ble 5 Bk o 8 SRS smgag M6}

where t (f ;@) is the value exceeded with some small probability the degrees of
freedom being f. A different justification was used by J. NEYMAN to arrive at
these limits, which he called Confidence Limits.

NEYMAN showed that if these limits were adopted, that is to say, if on comple-
tion of an experiment of this kind it was always said that lay within the limits
x + t(f; @) s/+/n, then in the long run this p statement would be right in a pro-
portion 1 - X of the time. 1 -a& is called the Confidence Coefficient, and the limits
are called the 100(1 -& ) ¢ Confidence Limits. For example, if & is taken equal
to 0.05, they are the 95% Confidence Limits.

Note:

(i) If we wish to increase the Confidence Coefficient, we would have a wider
interval.

(ii) If, on the contrary, we were contented with the low Confidence Coeffi-
cient, we could obtain a narrow interval.

(iii) In order to get a reasonably narrow interval with the considerably high
confidence, we would have to either increase the precision of experiments

themselves or increase the number of replications.

1.5 The Reason for Taking the Specimens in Pairs

In order that comparison should be made between specimens as like as possible,
each test-piece was cut into halves, one half being treated and the other half not.
The results analysed were the differences in abrasion resistance between the
treated and untreated specimens cut from the same test-piece. The comparisons
were thus kept entirely within a test-piece and the large variation between test-
pieces was eliminated both in the design and in the subsequent analysis.

The essential plan is to limit comparisons to within aggregates of material
which are made homogeneous than the whole; these aggregates are called Blocks.
In the example given the blocks are the test-pieces from each of which a treated
and an untreated specimen is obtained. The error appropriate for making the test
is then that due to the variation between a pair of specimens from the same test-
piece if no treatment were applied, the additional variation from one test-piece to
another being eliminated. This will be seen more clearly by referring to the indi-
vidual results given at the right-hand column of Table 1.1.

1.6 Comparison of Two Randomized Groups

Sometimes there may not be enough knowledge of behavior in the experimental
material to warrant pairing or blocking. The alternative is merely to assign the
individual materials (specimens, test-pieces etc.) at random to the two groups, and
then apply one of the treatments to each group. It will be only the two means that
are compared, not the individual measurements. Experimental error will be deter-
mined by the average variation among the individuals within each of the groups.

In order to illustrate the analysis of this type of comparative experiments,
suppose that the data in Table 1.1 were obtained from the experiment, which uti-
lized ten test-pieces, one specimen being taken from each test-piece.

Two groups of five test-pieces each are assumed to be drawn at random from
populations in which different treatments may have differentiated the means but not
the variances. Denote the population means of the treated and the untreated group
by w1 and p, respectively. For evidence we have the group means x] =13.5 and
xoz 115 6%

= 4 =



Then, the familiar question is this: Is the difference, 51 - _x.o = 1.9, attribut-
able to a population difference pi - ygy, or may it be random variation from a single
population mean, (that is to say, p = po)’? ’

To answer this question the following steps are taken:

(1) We set up the null hypothesis,

Hg! g =g sorervernnnesass fe e S &

The ¢-distribution furnishes a test:
? = [(51—5‘0)—@1-90)] /s (%) - %) e (128)
which becomes, with Hg
§ o= (@ _a?o)/s(j;1 = Tg) cererevereeseenss (1.9)

where s (R - ) denotes the standard error of the difference of the two means
x&q - xy. It remains only to calculate the denominator.

(2) Each group provides an estimate of 02, the variance common to the two
experimental populations. The estimates are obtained as follows:

Treated group Untreated group
wi=(x;-10.0)x10 ui2 w; =(x;-10.0)x 10 wiz

47 2,209 21 441
40 1,600 9 81
62 3,844 45 2,025
2 4 -7 49
24 576 12 144
__ 175 8,233 _ 80 2,740
w1=35 -6,125 up=16 -1,280
51:2,108 So=1,460
s12= 527 522: 365

The average of these two estimates is used as the best estimates of 0 2,

Y

2

s2-1(s42 +5,%) =5(5.27 +3.65) = 4.46 ..... (1.10)

2
Now, as we know, the variance of each of the two means is,

55 © ecg? frim 44675 = 0BIZ n e ras ceeeee. (1.171)

By referring to the mathematical theory or by drawing random samples
experimentally we will be able to know that the variance of random differences is
double that of the original population. We have, therefore,

2 2 2
S(71-%y) = 5% * 5 =2s%/n=2x0.892=1.784 ... (1.12)



Substituting the difference between the group means 301 - -‘io =1,9, along
with its standard error, s(xq-x) = ¥1.784 = 1.34, we have from (1.9),

t =(x -7y) /S(3,1_J—¢O) =1.9/1.34 =1.42

There are n - 1 = 4 degress of freedom associated both with s12, and with 522,
making 2(n - 1) = 8 in total.

Comparison of £ = 1.42 with the figures corresponding to d.f. = 8 in
¢t - table shows that the probability for this ¢ —value to be equalled or exceeded is
approximately equal to 0.20,

(3) Since the probability 0.20 is of modest size, the null hypothesis can not be
rejected.

Note:

(i) The general formula for obtaining the standard error of the difference of
two means, one from n{ observations and another ny observations, is

e e B g e Bl / 2
5(06,1_302)2_5le +ch2 =(1/ny +1/n5) s
= (n4 +n2)/(n1n252)

(ii) In section 1.3 and 1.2 the same null hypothesis was rejected with the
risk of about 1% and 3%, respectively, whereas, here we cannot reject
it. This comes from having ignored the pair in the testing procedure of
the latter case.

(iii) With increasingly precise experimentation in any field, resulting from
more exact knowledge of the behavior of the experimental material, group
comparisons are likely to be replaced by those of individuals (paired
comparison).

(iv) If the investigator is interested more in estimates than in tests, he may
choose to use the Confidence Limits rather than ¢ -test.

He may report that %; - EO = 1.9 with the 95% Fiducial Limits:

xq-x0tt (0.05; 8) S(Z1-20)

I

1.9 + 2.306 x 1.34
= 109 £ 3
=(-1.2 ~45.0)

|

2. TEST OF EQUALITY OF MORE THAN TWO POPULATION MEANS

This is a natural extension of comparison of two randomized groups described in
section 1.6. These populations are thought of as having me ans characterized by
the treatments but with a common variance unaffected by treatment.

Theoretically, they are normal populations all having the same variance, 02, but
each with its peculiar mean p. As examples, there may be several lots of animals,
every lot receiving a different ration; or several classes of children in the 6th
grade on which different methods of instruction are being tried. Table 2.1 con-
tains the data from such an experiment.



Table 2.1. Percent Loss of Product in Manufacture
of an Organic Chemical

Batch No. A1 ‘ A2 A3 A4

1 22.4 15.4 6.0 12.4

2 256 20.4 14.9 10.6

3 22.5 20.0 15.6 8.9 Grand

4 19.7 15.3 14.4 T=5 total
Total 90.2 T1.1 50.9 39.4 251.6
Mean 22.6 17.8 12.7 9.9 15.725

Table 2.2. Symbolical Representation of an Experiment

Level of Treatment Aq Ay As Ay
Individual observations X11 Apq ——=Xj1 ———=X41
Rows have no physical X112 Xop ====Xj5 ====X32
meaning because the Xjj ‘ i : ;
can be rearranged within ; : Xij i
each of the columns : X2n, i E
(n= Zni) X1n1 Xini Xana Grand
Total
Total T1 T2 ————— Tl ————— Ta G
Mean 7(1 i2 ii )_('a

The experimenter wished to learn how the percent loss was influenced by the four
different blends. The usual method of calculation is shown below:

(1) The correction term:
CT =G2/n
=(251.6)2/16 - 3,956.41

(2) The total sum of squares:

a nj —.2 a nj o
Sstr= 35 s (X5-X)"= 3 z X -CT
i=1  j=1 i=1  j=1
= (22.42 £ 25.6% 4 cenenns +7.5%) - CT

Il

4,449.18 - 3,956.41 = 492.77

(3) The sum of squares for blends (between groups):

- = =2 = v)
Sa= s nXi-X)= 5 T;“/n;-CrT
i=1 i=1

(90.22 + 71.12 + 50.92 + 39.42)/4 - CT

Il

4,333.605 - 3,956.41 = 377.195

1



(4) The sum of squares for batches (within groups):
a nj a nj

i -2 2 2

2 oy Xyy-XP= 5 2 X - 2 T /ny
1:1' J'—‘1 i=1 j=1 i=1

S

1
b

e

ST - Sp = 492.77 - 377.195 = 115.575

(5) The results from the last 3 steps, with corresponding degrees of freedom,
are entered in Table 2.3.

Table 2.3. Analysis of Variance of Percent Loss
Source of Degrees of Sum of Mean Brpecied
- value of
variation freedom squares square
mean square

Total T 16-1=15 ST=492.77
Treatment A 4-1= 3 SA=377.195 125,732 12%*| 2.4 A2
(between groups)
Error e 4(4-1)=12 Se=115.575 9.631 2
(within groups)

Comments:

(i) The degrees of freedom and sum of squares in the last line are got by
subtraction, taking advantage of the addition theorem characterizing this
analysis.

(ii) The mean square or variance is obtained from dividing the sum of squares

by the corresponding degrees of freedom.

This partition of degrees of freedom and corresponding sums of squares is
called analysis of variance. Under the assumptions outlined above, sampling from
normal populations with common 02, 9,631 is an estimate of this ¢2. But the mean
square for treatment, 125.732 seems to have an additional component due to the dif-
ferent behaviors of the blends in the chlorsulphonation.

As to the constancy of the variance, the ranges in the samples are evidence.
For A4, the range is 25.6 - 19.7 = 5.9; for the others, 5.1, 9.6, 4.9.

(6) Now, these data introduce a familiar question: is ordinary random sampl-
ing accountable for the large discrepancy between the mean square for treatment
and error, or shall we conclude that the treatment means are differentiated by
causes other than sampling fluctuations?

The appropriate null hypothesis to be tested is Hg: p; = up ..... = pg, which
specifies the population sampled by the levels of treatment. In order to test Hp, a
new test criterion is calculated, the ratio

Mean square for treatment means
Mean square for error

F =

To find the 5% and 1% points in F-table, look in the column headed by f{ =3
and down to the rows fy = 12. The required points are these: F {0.05;5 3, 12) =
3.49 and F (0.01; 3, 12) =5.95. On the other hand, from the analysis of variance
in table 2.3, we get

F =125.932/9.631 >12



Thus, from the distribution specified in the hypothesis, there is less than one chance
in 100 of drawing a sample having a larger value of this . Evidently the samples
come from populations with different p. The conclusion is that the four blends have
different effects on the percent loss in the chlorsulphonation. )

(7) Least significant difference

The estimated standard error of the difference between any two treatment
means is

2
| 2s _j2x9.631 -
sd —j — = 7 =2.19

Hence the least significant difference is obtained as follows:

l.s.d. = t(0.05; 12) sq

|

I

2.179 x 2.19 = 4.77,

from which we can state that the blends A4 and A3 have the smaller loss than those
of Ay and A5 and that the loss of Ao is smaller than that of Aq.

3. COMPLETE BLOCK DESIGN

3.1 Basic Principles for Design of Experiments

When several experimental treatments are to be compared it is clearly desirable
that all other conditions shall be kept as nearly constant as is practicable. Random
variations will occur and appear as experimental error, and some "Replication"
under similar conditions will be required to compare the treatments with sufficient
reliability ; such replication also supplies the information to estimate the experimen-
tal error, and this is required to assess the reliability.

In practice, particularly when the number of trials required is large, it is often
difficult to ensure such similar conditions owing to the natural variability of the
materials and processes involved. (Even if the variability could be eliminated it
is doubtful whether it would be wise to try, since such variability broadens the basis
of comparison and so renders the results more generally applicable.) It is often
possible, however, to split up a set of trials into smaller groups within which such
variations are likely to be less than in the set as a whole. Thus pieces cut from
the same sheet of rubber are expected to be more alike in their properties than pieces
cut from different sheets, and samples taken from a plant over a short period vary
less than those taken over a longer period. Where these conditions hold, the pre-
cision of experiment can be increased by dividing it into "Blocks," within each of
which the random variations are likely to be smaller than in the experiment as a
whole. In Randomized Block Design each block contains all the treatments concern-
ed (this ——> being called Complete Block), while the use of several blocks ensures
that the number of observations is sufficient to give the required precision to the
experiment as a whole. Where the block is too small to accommodate all the treat-
ments, resource may be had to the more complex Incomplete Block Designs discussed
in Chapter 5. This device 'Blocking' is called "Local Control" and may be consid-
ered as an extension of paired comparison stated in Section 1.3. Sometimes this
blocking can be effected in more than one way; for instance, in a multiple plant the
various units may differ in performance, and in addition there may exist a trend in
time, as in certain electrolytic and catalytic processes. Under such circumstances
the most efficient design for the comparison of different experimental treatments is
known as Latin Square.



Although the variability within any block is likely to less than that in the experi-
ment as a whole, there may be a systematic variation within the individual blocks.
Thus pieces from the centre of a sheet of rubber are likely to differ systematically
from those cut from the edge of the sheet. If therefore the treatments are intré-
duced in the same relative positions in successive blocks, spurious effects due to
the systematic variations associated with position within a block are likely to be
introduced into the results. To overcome this the arrangement of the treatments
must be different in each block, the actual positions of the treatments within any
block being chosen by an adequate "Random" process.

R.A. FISHER gave the following diagram to show the above three basic
principles for design of experiments.

Fig. 3.1

Basic Principles for Design of Experiments

/L Replication

Randomization

1 Local Control

Validi { )
( riicity of ) \ Diminution of Error

Estimate of Error

4

< Test of Slgn1f1cance> ( Precision increased)

Fiducial Statement

3.2 Randomized (Complete) Block Design

(1) Introduction

Suppose it is required to compare the effects of five treatments, say five lots
of material prepared in different ways, or five temperatures of reaction, and in
order to reduce the uncertainties caused by experimental error it is decided to test
each treatment four times, making twenty trials in all, then the ideal design will
provide for all twenty trials to be carried out under uniform conditions, apart from
deliberate variation of the treatments. In practice it may be impossible to do this
because, for example, sufficient raw material of uniform quality for twenty trial
cannot be made. But it may be that a homogeneous batch of raw material sufficient
for five trials can be made, and if so the experiment may be arranged so that all five
treatments are tested on each of four batches which are homogeneous but not neces-
sarily identical, with the consequence that any variation from batch to batch does
not affect comparisons between the treatments. A typical example arises in the
testing of rubber or other material in sheet form. Suppose five methods of treat-
ing the rubber are to be tested and large sheets are available. Adjacent samples
cut from a rubber sheet are usually more alike than non-adjacent samples, and this
property suggests that comparisons between treatments should be made between
adjacent samples of rubber. To compare five treatments, replicating the experi-
ment four times, four pieces should be cut from different parts of the sheet and each
piece cut into five, for in this way the variation from one set of five to another does
not affect comparisons between the five treatments, which are made entirely within
the sets. Had twenty pieces of rubber been cut from the sheet and the five treat-
ments applied at random the experiment would have been less sensitive, because the
heterogeneity of the material would have inflated the experimental error.

-10 =



In this context the set of five pieces taken from the same part of the sheet is
called a 'Block'. As a precaution against systematic variation from one trial to
another within a block, it is desirable to arrange the treatments within each block
in random order, and when this has been done the results is a Randomized Block
Design. The terminology originated with agricultural field trials. In order to
minimize the effects of differential fertility the experimental area is divided into
compact blocks, each supposed more homogeneous than the whole, and the blocks
are subdivided into plots, one treatment being assigned to each plot. If the plots
were arranged systematically within blocks the experiment would be vitiated by any
fertility gradient occurring in the same direction; consequently the treatments must
be allotted to the plots in random order.

(2) Layout ——- Manufacture of an organic chemical

This investigation concerned the chlorsulphonation of acetanilide. The yield
is somewhat below the theoretical, mainly because of loss of product in the mother
liquor (i.e. the liquor removed when the product is filtered). It was required to
test whether different blends of acetanilide gave different losses, and to do this five
different blends were made and four batches of products were prepared from each
blend. If the blends had been tested one at a time, i.e. four batches from blend 1,
then four batches from blend 2, and so on, any variation from blend to blend might
have been due to a time trend in the process and not to any real differences between
the blends. To eliminate this effect the experiment was designed in randomized
blocks. There were twenty batches in all, divided into four blocks of five, the five
in one block being prepared from the five blends of acetanilide in random order.
The following table gives the order of preparation and the blend used.

Block I II 111 v

Batch {1 2 3 4 5|6 7 8 9 10 |11 12 13 14 15 | 16 17 18 19 20

Blend | B A C E D|A E B C D C A B D E B D C E A

(3) Data obtained

Table 3.1 Percentage Loss (Xij)

Block Blend of acetanilide Total Mgan g]ffe_c_t
e A B c D E T 4 Xes X=X
J J J
1 18.3 17.1 17.3 15.1 16.T 84.5 16.9 -0.6
11 18.8 18.3 18.1 15.9 16.9 88.0 17.6 0.1
111 19.8 19.2 17.2 17.8 16=5 90.5 18.1 0.6
IV 18.3 18.2 17.0 16.0 17.5 87.0 17.4 -0.1
Total T, 75.2 72.8 69.6 64.8 67.6 350.0 = G
Mean Xx; 18.8 18.2 17.4 16.2 16.9 17.5=x
_Effect_ +1.3 0.7 -0.1 -1.3 -0.6 0.0
Xi. - X

- 11 -



(4) Expected values and residual

Table 3.2 Expected Value

Rij=X+F, -%+&X;-%)

Blend
. @ A B C D E Total
I 18.2 17.6 16.8 15.6 16.3 84.5
I 18.9 18.3 17.5 16.3 17.0 88.0
111 19.4 18.8 18.0 16.8 17.5 90.5
v 18.7 18.1 17.3 16.1 16.8 87.0
Total 75.2 72.8 69.6 64.8 67.6 | 350.0

Table 3.3 Residual

Y ij ij i J
Blend
Block A B (@ D E Total
I 0.1 -0.5 05 -0.5 0.4 0.0
I -0.1 0.0 0.6 -0.4 -0.1 0.0
111 0.4 0.4 -0.8 1.0 -1.0 0.0
v -0.4 0.1 -0.3 -0.1 0.7 0.0
Total 0.0 0.0 0.0 0.0 0.0 0.0
(5) Computation of sums of squares

1) -X = (X, —X)T(Xj—X)+ = —XJ+X)

Deviation reatment block re51dual
from effect effect
grand mean

2) 2 2 (Xij-?()2 =t X KX a2 (i.j-?()z +33 (Xij—ii.-i.jd(')z
i i J
I I ! I
ST SA SR Se
3) (ar—-1)=(a—1)+(r—1)+(a—1)(r—1)
I I I l
fp fa fr fo

Total sum of squares:
- 2 £ x5 2
St= < 2 (Xij-X)
L]

- (18.3-17.5)% + (18.8-17.5)% 4 +++ + (16.5-17.5)% + (17.5-17.5)°
- 25.84

-1



Sum of squares between treatments (blends):

Sa

Sum of squares between blocks :

SR =a
J

r f (—)-(i - _X)z

% Bri-%P

4 {1 32 4 0.7% + (<0.1)% + (=1.3)2 + (~0.6)2 } ~16.96

-5 {(-0.6)2+0.12+o.62 +(=0.1)2 } =3.70

Sum of squares due to error (from the residuals in Table 3.3)

>y z _— < . =12
Sg = (Xij - Xis - X +X)

i

:O.12 + (-0.1

)2

4 oo

(6) Computational Procedure

Uij = (Xij - 17.0) x 10

+(<1.0%+0.7% - 5.18

Table 3.4 Code Number

Blend ] >
I 13 1 3 <19 -3 -5 25
II 18 13 11 =11 -1 30 900
11 28 22 2 8 -5 55 3025
v 13 12 0 =10 5 20 400
B 72 48 16 32 -4 [100  4350/5 = 870 = (Dg
Ti.2 |5184 2304 256 1024 16 |8784/4 = 2196 = (DA
100%/20'= 500 =~ CT
Table 3.5 U,;°
able . ij
Blend
Block A B o -
I 169 1 9 361 9
II 324 169 121 121 1
11 784 484 4 64 25
v 169 144 0 100 25
Total 1446 798 134 646 60 3084 = (II)

St = (II) - CT = 3084 - 500 = 2584

SA=(I)p - CT = 2196 - 500 = 1696

SR = (I)g - CT = 870 - 500 = 370
Sn =ST-SA—SR:518
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(7) Analysis of Variance Table

Table 3.6 Analysis of Variance (decoded) (% loss)

Source of Degrées of Sum of Mean square Variance Ei;:iigti?
Variation freedom squares (Variance) ratio F

Mean square
Total T fp =19 ST =25.84
Treatment A | fp= 4 SpA=16.96 Vu =4.24 9.81%% | 924 4k 2
(Blends)
Block R fr= 3 Sr= 3.70 Vp=1.23  2.85 g2 4 5kp2
Error e fe =12 Sa = 5418 Vg, =0.432 g2

The variation among blends is significant at the 1% level:
F=9.81 > F (4, 12; 0.01) = 5.41

The test of significance is appropriate in this example because we were inter-
ested in testing the existence of blend-to-blend variation which, on chemical grounds,
did not seem likely. Since the mean square between blends is highly significant at
the 1% level, we conclude that there is clear evidence of blend-to-blend variation.

If the existence of this variation was not in question but only its magnitude, the pro-
blem would be one of estimation and the result would require to be interpreted in
terms either of errors of the first and second kinds or of confidence limits.

Although the apparent variation among blocks is not confirmed (i.e. it might
well be ascribed to experimental error), future experiments should still be carried
out in the same way. There is no clear evidence of a trend in this set of trials,
but it might well appear in another set, and no complication in experimental arrange-
ment is involved.

(8) Least significant difference

The estimated standard error of the difference between any two blend means
is

sqd =/ 2Ve /T :/2)(0.432/4 = 0.465
from which, we can calculate the least significant difference
l.s.d. =t (12; 0.05) S4q = 1.01.

Referring to the treatment means given at the bottom of Table 3.1, we can conclude
that:

A B > D
— | J

(9) Missing plot technique

It has been assumed hitherto that every treatment is equally represented in
every block, so that the effects of block and treatment variation can be assessed by
simple averaging. It may happen that in one of the blocks one treatment is not test-
ed, or more generally the results of one or more treatments in one or more blocks
are not available. We cannot then use the simple analysis given above.
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Suppose that for some reason the result of one trial, say batch 14 (block III,
blend D) is not available. The procedure is to calculate from the remaining trials

the most probable value for batch 14, using the estimates of the effects of block III
and of blend D.

To do this we insert symbol y in place of the missing values, carry out the
analysis of variance including this symbol, and then calculate value for it such that
the residual or error variance is a minimum. This is the best estimate of the mis-
sing value in the sense that it minimises the error variance.

The estimate of the missing value is obtained by the following formula:

aA+rR -G
V= @) 1)

where,

A
R

1

total of known observations of the treatment containing y

]

total of known observations of the block containing y

G = total of all known results
omitting y from these total.
From Table 3.4 it is found that

A = - 40, R =47, G =92

Therefore substituting these values will yield the estimate:

5 x (-40) + 4 x 47 - 92 -104
)

B-1)4<1) = 712 -7

An appropriate analysis of variance can now be carried out in the usual way,
using the estimate for batch 14, with the difference that the error variance has only
11 degrees of freedom instead of 12, because one of the results is estimated. The
resulting analysis is shown in Table 3.7.

Table 3.7 Analysis of variance with one value missing

Source of Degrees of Sum of Mean square F
Variation freedom squares (variance)
Total T fpr =18 ST =27.57
Treatment A fa= 4 SA=21.96 VaA=5.49 17.2%*
(Blends)
Block R fr= 3 SR = 2.10 Vg =0.70 252
Error e fe =11 Se = 3.51 Ve = 0.319
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3.3

(1)

In an experiment which is not divided into blocks the replicated treatments are

Latin Square

Introduction

distributed at random over the whole of the experimental material, the heterogeneity
of the material together with the testing errors giving the residual (or error) varia-
In a randomized block experiment the heterogeneity is controlled by applying
the treatments over compact blocks of relatively homogeneous material, thus reduc-
ing the residual variation and making the comparisons more sensitive. Under suit-
able conditions the experiment may be subdivided in more than one way, giving in
each case greater homogeneity.

tion.

Some examples are shown below.

(a)

An experiment on the weaving of cotton cloth. The purpose of this
experiment is to investigate the effect of sizing treatment applied to the
warp. The criterion is the number of breaks in the warp during weav-
ing. Four warps, each with a different sizing treatment, are assumed
to be woven simultaneously on 4 different looms, which can be supervised
by a single weaver. Then each warp is moved to a different loom of the
set so that after 4 periods every sizing treatment have been tested on all
4 looms. If A, B, C, D represent the 4 warps, the Latin square used is
as follows:

Looms
Periods 1 5 3 p
This arrangement can eliminate constant
I A D B c differences among the looms., and also
II D C A B differ.'ences among the 4 periods of
I c B D & weaving.
v B A C D

In the preparation of an explosive mixture used in primers, variation
may occur either in the mixing of the ingredients of the explosive or in
the process of charging. Suppose that one experiment of this type
includes 4 mixing-blending teams and 4 charging operators. On each
day, the product of cach team is sent to a different charging operator,
the arrangement being changed daily according to the following Latin
square.

Charging operators

1 2 3 4
Monday A D B C
Tuesday B A G D A,B,C and D represent
Wednesday C B D A the mixing-blending teams.
Thursday D C A B

The Latin square analysis of variance enables us to isolate consistent
differences amongst the teams and consistent differences amongst the
charges, as well as day-to-day variation.

A rough rule for randomization is this: Having written down any system-
atic arrangement of the letters, rearrange at random the rows and colums;

then assign the treatments at random to the letters.

For refinements, see the Fisher and Yates's Table.
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(2) Layout ————- wvear testing of textile fabrics

In a wear-testing machine with four positions the results obtained in the four
positions may vary apart from testing error, and comparisons between different
materials will be more precise if all are tested in the same position. This means,
however, that they can not be tested in the same run of the machine. There may
also be variation from run to run, and comparisons between different materials.will
be more precise if all are tested in the same run, in which case they cannot all be
tested in the same position. If the variation between runs or between positions did
not exist or could be ignored a randomized block design could be used, but in order
to eliminate both sources of variation from the comparison of treatments a more
elaborate design would be required. It is impossible to make every comparison,
say treatment 1 with treatment 2, in both the same run and the same position, but it
is possible to ensure that each treatment is tested the same number of times in every
position and also in every run, provided the number of runs is equal to the number
of positions. The average response for each treatment is then an average over all
runs and over all positions, and provided the position effect is independent of the
run effect all the treatment averages are equally affected by the run and position
variations. The relative values of these averages are thus unaffected and they are
estimated as precisely as if the run and position variations did not exist.

The arrangement of the trials to ensure that each treatment is tested once in
every run and once in every position makes use of the Latin Square. This is a
square containing m rows and m columns, and consequently 22 cells. Each cell
contains one of m letters, corresponding to m treatments, and each letter occurs
once and once only in each row and each column.

The following is an example of an experiment relating to the testing of rubber-
covered fabric in the MARTINDALE wear tester carried out as a 4 x 4 Latin Square.
The machine consists of four rectangular brass plates on each of which is fastened
an abrading surface consisting of special-quality emery paper. Four weighted
bushes, into which test samples of fabric are fixed, rest on the emery surfaces,
and a mechanical device moves the bushes over the surface of the emery, thus
abrading the test specimens. The loss in weight after a given number of cycles is
used as a criterion of resistance to abrasion. There are slight differences between
the four positions on the machine, and it is known from past experience that if a run
is repeated under apparently identical conditions and using apparently identical
samples, slightly different results are obtained, ascribable partly to variations in
the emery paper and partly to variations in temperature, humidity, etc.

If samples of fabric are to be compared it is clearly desirable to eliminate
the effect of variation from one position to another, and from one run to another, as
far as possible. It could be assumed that the three factors, positions, runs, and
materials acted independently, so that if one position gave a higher rate of wear
than another it would do so in every run and on any material, and so on.

(3) Data obtained

The experiment described involved four materials tested together in each of
four runs on the machine. These numbers were chosen because the machine has
four positions, so that a Latin Square design could be used. ‘The entries of Table
3.8 denote the loss in weight (units of mg.) in a run of standard length, and the
letters A to D refer to the four materials.

= 17 =



Table 3.8 Results of wear-testing experiment: Latin Square

Run Position in machine — edags
1 2 3 4
1 B 21.2 A 27.0 D 22.7 Cc 22.9 93.8 23.5
2 C 23.5 D 23.9 A 26.3 B 22.6 96.3 24 .1
3 D 23.4 B 24.0 Cc 23.0 A 26.7 97.1 24.3
4 A 25.2 C 24.2 B 21.8 D 24.0 95.2 23.8
Total 93.3 99.1 3.8 96.2 382.4
Average 233 24.8 23:5 24.1 23.9
Total A 105.2 B 89.6 C 93.6 D 94.0 382.4
Average 26.3 22.4 23.4 23.5 23.9

From a simple inspection of the averages it appears that:

(i) Material B is best (lowest loss)

(ii) Run 3 gives higher losses on the average than the others.

(iii) Position 2 is more severe than the others.

However, a statistical analysis is required to test the significance of these
apparent differences.

(4) Analysis of variance

Table 3.9 Code number u = (x - 23.0) x 10

Run c, p.oéi;ion inc";“hi“e Cy Total (Total)?

R4 B -18 A 40 D -3 C -1 18 324

R> C 5 D 9 A 33 B -4 43 1849

R, D 4 B 10 C O A 37 51 2601

Ry A 22 C 12 B-12 D 10 32 1024
Total 13 71 18 42 144  5798/4=1449.5
Total squared 169 5041 324 1764 7298/4 =1824. 52832
Total A 132 B-24 C 16 D 20 144———(144)2/1621031?6
Total squared 17424 576 256 400 [ 18656/4 =4664(I) 5

sum of square of all entires: 2 E uzij. = 5502 = (II)
i
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Total sum of squares: St = (I1) - CT = 5502-1296 = 4206

Sum of squares between runs: Sg = (I)g - CT = 1449.5-1296 = 153.5
s.s. between positions: So= (I)C - CT = 1824.5-1296 = 528.5
s.s. between materials: Sy = (I)A - CT = 4664 - 1296 = 3368
Error sum of squares: Se =ST -SR-S -SA = 156.0
Table 3.10 Analysis of variance
Sou.rm.a of Degrees of Sum of Mean P
variation freedom squares square
Total T fp=m?-1=15 S =42.060
Runs R fR=m-1=3 Sgp =1.535 VR =10.512 1297
Positions C fc=m-1=3 S¢ =54285 Vg =1.762 6.78%
Materials A fA=m-1=3 S A =33.680 Va=11.227 > 40%%
Error e fo = (m-1)(m-2)=6 Se =1.560 Ve = 0.260

The

The value of F corresponding to materials greatly exceeds the 1% level.
design has been successful in eliminating a considerable amount of variation

associated with positions which would otherwise have decreased markedly th-
sensitivity of the comparisons between materials.

then

(5) Least significant difference

l.s.d. =t (6; 0.05) Sq

= 2.447 x ’ 2 x 0.260/4 =0.88

As for the loss in weight we can conclude that

]

A > (C; D) - = B

(6) Estimate of missing value
The method of § 3.2 (9) may be used to estimate missing values.
For one missing value y and with the notation

R = total of known values in row (run) containing y
= total of known values in column (position) containing y
total of known values in treatment containing y

= total of all available values

3 0 » Q
I

= number of treatments, columns or rows

m(R+ C+ A) - 2G
y = (m=1) (m-2)

= 110w



4. FACTORIAL EXPERIMENTS AND SPLIT-PLOT DESIGN

4.1  Factorial designs

Frequently in scicntific investigations, particularly where an empirical approach
has to be adopted, problems arise in which the effects of a number of different factors
on some properiy or process require to be evaluated.  Such problems can usually be
most economically investipated by arranging the experiments according to an ordered
plan in which all the factors arc varied in a regular way. Provided the plan has
been correetly chosen, it is then possible to determine not only the effect of cach
individual factor but also the way in which each effect depends on the other factors
(i.e. the Interactions). This makes it possible to obtain a more complete picture
of what is happening than would be obtained by varying each of the factors one at a
time while keeping the others constant.  Designs of this sort, moreover, lend them-
selves well to statistical analysis and can if required provide their own estimates of
experimental errvor.  In this field the design and the analysis of the results arc
closely linked, and unplanncd experimental work is liable to confuse the effects
sought in such a way that much of the information which would otherwise be available
is sacrificed.

4.2 Example —-— wear resistance of vuleanized rubber

The data given in Table 4.1 are taken from the results of an investigation into
tho effecets on the physical properties of vuleanized rubber of varving a nimber of
factors, the property recorded being the wear resistance of the samples, and the
factors being:

A Five qualities of Qo
B : three methods of pretreatment of the rubbor

'+ four qualities of the raw rubber

Table 4.1  Data of a 5x3x4 factorial experiment
(Near resistance of vulcanized rubbor)

T.cvel of factor C

Loevel of Cq CH (G Cy
factor A
By B, By By B, By By B, By By B, By
Ay 404 478 530 381 429 528 | 316 376 390 | 423 482 550
A 392 418 431 ] 239 251 249 | 186 207 194 | 410 416 452
A3 348 381 460 | 327 372 4821 200 315 355 | 383 376 496
\y 206 291 3331 165 30 20 158 270 2260 | 3u1 306 330
Ag (86 193 2251 129 157 197 1075 163 190 | 213 200 255

Note that, as alwavs in a complete factorial design, all combinations of the
lovels of the different facte-s ar: t>s'ed.
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Table 4.2 Two~-way table of sums for factors A and B

B4 By By Sum Mean
Aq 1.524 1.765 1.998 5.287 440.6
A 1.227 1.292 1.326 3.845 320.4
Aq 1.348 1.444 1.788 4.580 381.7
Ay 920 1.108 1.125 3.153 262.7
As 633 718 867 . 2.218 184.8
Sum 5.652 6.327 7.104 - 19.083
Mean 282.6 316.4 355.2 318.1

Table 4.3 Analysis of variance

?;:iict?orolr d.t, sS.s. m.s. F .

Total 59 766,297

Main effects A 4 478,463 119,616 374 *%
B 2 52,794 26,397 82.5 *x*
C 3 150,239 50,080 156  **

" Interactions AB 8 16,807 2,101 6.5T7%%

AC 12 53,890 4,491 14.0 **
BC 6 6,416 1,069 3.34 *

Remainder=interaction
ABC 24 7,688 320

4.3 Split-Plot Designs

In factorial experiments, it is often desirable to lay out the levels of one factor
in relatively large units (or whole plots) designed as a randomized block, Latin
square, or other design, on account of the following circumstances:

(1) By necessity: The very nature of the levels of this factor may be such as
to exclude the use of small plots or units.

(2) By design: The experimenter may know that the levels of this factor
usually differ in yield, and he can forego precise informa-
tion on this factor.

Since the 'whole plots' are large by necessity or by design, it may be desirable
to compare levels of another factor on each (smaller) plot, the several levels being
allotted to the split-plots or sub-units of each whole plot at random. Such an ar-
rangement is called 'split-plot design', and is a type of factorial arrangement, in
which the main effect of one factor is completely confounded with whole plot differ-
ences.
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The whole plot treatments as well as the split-plot treatments may themselves
represent a factorial arrangement. The terminology 'whole' or 'split-plot' treat-
ment does not necessarily refer to the levels of a single factor. ’

Numerous examples of factors which require large experimental units are
available in all fields of research. A few of these are listed below to illustrate
the diversity of material for which split-plot designs are suitable.

(i) In field experiments on varieties or fertilizers on small plots, some
cultural practices with large machines may be tried on whole groups of
the smaller plots, each group containing all the varieties. Irrigation
is one such practice that demands fairly large areas per treatment.

(ii) In greenhouse temperature studies, it may be necessary to keep the
entire greenhouse at a constant temperature. Several treatments may
be conducted in the greenhouse, but the greenhouse is used as a unit.
Heat chambers, storage cellars, freezing units, baking ovens etc.,
must also be utilized as a single experimental unit.,

(iii) The smallest unit in some plant-response studies is a single plant, but
the plant may be subdivided into subsamples to study the methods of
chemical analysis to determine plant composition.

(iv) In the preparation of metal alloys a smelting or blast furnace requires
large amount of material, whereas some treatments, such as types of
mould, require relatively small amounts.

(v) In experimental education a movie film may be used by several teachers
and on several sets of students; the film is a single experimental unit as
far as replication on the film is concerned. Perhaps replication on
films could be obtained by filming the material on different types of film
under different conditions, by different operators and cameras, etc.

Randomization
(1) The randomization procedure for the units (or whole plots) is determined
by the particular design chosen, such as a randomized block, Latin square

or others.

(2) Randomization of the sub-unit (or split-plot) treatments is newly done in
each whole plot.

A consequence is that the experimental error for sub-plot treatments is differ-
ent (characteristically smaller) than that for whole-plot treatments.

5. INCOMPLETE BLOCK DESIGN

5.1 Introduction

The principles of designing experiments for comparing a number of treatments
when uniform conditions can be maintained within blocks of observations, each
accommodating one replicate (or the same number of replicates) of each treatment,
were discussed in Chapter 3. Sometimes experimental conditions will not permit
blocks large enough to include every treatment, so that all treatments cannot be
tested under uniform conditions; nevertheless, by suitably designed experiments,
valid and efficient comparisons between the treatments can be made without being
disturbed by the differences between the blocks.
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5.2 Balanced Incompleie Block Designs (BIB)

(1) Simple examples:
(1) V:4,k:3,b:4,r:3, 1:2,6289%

Block

N = = -
wWwN N
A o

(11) V:7,k:37b:79r=3, A=1ye:78%

Block

SOV B WD) -
= OV AW
WN ==~V B

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(2) Fundamental relations among parameters:

(i) vr = bk where v: number of treatments
ofi 1] k: size of (incomplete) block, (& v)
(i) 21 = —e b: number of incomplete blocks

r: number of repetitions of each treatment

A: number of times (an integer) a treatment
occurs with each of the other treatments
within same incomplete blocks.

Note: This relation (ii) demands that A should be equal for all pairs of
treatments and be equal to an integer.

The efficiency factor, e, is defined as the fraction of total information
contained in intra-block comparisons when inter-block and intra-block contrasts
are of equal accuracy, and is equal to

1-1/k _ vk -1) v A

(iii) e:1—1/v‘ k(lv-1) ~ kr

6. FRACTIONAL FACTORIAL DESIGN BY USING ORTHOGONAL ARRAYS

6.1 Introduction

A complete factorial experiment, in which all possible combinations of all the
levels of the different factors are investigated, will involve a large number of tests
when the number of factors is large. Thus an investigation of five factors each at
two levels will entail 25 = 32 observations, each under a different set of experi-
mental conditions. An experimenter might well consider 32 observations excessive,
even after consideration of the advantages of the factorial design given in §4. In
any case the experimenter may not require the high degree of accuracy in the esti-
mates of the effects given by the complete factorial design, and he may be satisfied
from prior knowledge of the process or similar processes that many of the inter-
actions, particularly the higher-order ones, are not appreciable and moreover he
may already have a sufficiently reliable estimate of the experimental error. Even
when an experiment of this magnitude may eventually be required he would prefer to
carry out the work as a series of smaller experiments.
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The object of Fractional Factorial Designs, sometimes called Fractional
Replicates, is to obtain information on the main effects and as many of the inter-
actions as seems necessary with a smaller number of observations than is required
by the complete design. Careful consideration of the best combinations of experi-
mental treatments is needed, and the theory brings out in detail what becomes of the
interactions neglected in any particular design, and what are the results if, unex-
pectedly, they are not negligible in reality.

There are two approaches to the problem of obtaining a suitable design in any
particular case. We may begin with the full factorial design appropriate to the
number of factors to be investigated, and by equating (or confounding) interactions
which are likely to be small or unimportant with one another and with other inter-
actions considered worth measuring we can arrive at a design in which all (or
almost all) of comparisons are made between effects likely to be important. The
number of observations needed will clearly depend on the number of such compari-
sons. If, for instance, an experimenter wants to estimate all the main-effects and
all the first-order interactions (that is: two-factor interactions) of ten factors each
at two levels, the number of main-effects and of first-order interactions being 10
and 45, respectively, it follows that 1/16 [ractional replicates of 210 ractorial
design could be suitable, which requires only 64 tests in all.

Alternatively, we may begin with the full factorial design corresponding to a
number of factors smaller than is actually under investigation and substitute the
remaining factors for those comparisons which measure effects considered unlikely
to be appreciable. This procedure can be easily followed by using specially
devised "Table of Orthogonal Arrays" given below.

The types of investigations considered in this chapter are those in which the
experimenter requires to know the behaviour of several factors over a defined
range for each, beginning with two levels only. There are many investigations in
which we wish to compare two conditions only of each of a number of factors, e.g.
two different qualities (crude and purified) of one or more of the materials used in
a process; high and low agitation rates, these rates being restricted by the design
of the plant; two different designs of filter presses or filter cloths; two different
units of a plant; slow and vigorous reflux conditions; two different solvents; and so
on. Fractional replication of 31 factorial designs is also considered.

The use of fractional factorial designs has now become widely accepted as an
efficient way to carry out experiments involving a large number of factors. However,
one of the difficulties in adopting fractional factorial experiments is that it is neither
easy nor feasible to compute the estimates of all the factorial effects and to obtain
the indispensable analysis of variance table on desk calculating machines. But,
now, with electronic computers, it takes only a few minutes to complete the neces-
sary computations {for each character obtained from such experiments of moderate
size. Thus the specially devised "Table of Orthogonal Arrays" and the data pro-
cessing on electronic computers have made it quite easy for the industrial research
workers in Japan to use various types of fractional replicates of 21 and 3™ factorial
designs.

6.2 Design for 3 factors in 22 observations

The basic principles and methods of construction of fractional factorial designs
can be explained very simply by means of a 22 design. Denoting the factors by A
and B, the lower level of each factor by - and the upper level by +, the four combi-
nations of the factor levels constituting the complete design may be represented as
in Table 6.1.
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Table 6.1

Notation for 22 factorial designs

. Level of Level of Treatment
Observaiion factor A factor B (A B) combination
Y4 - - + (1)

Y2 + - B a
Y4 - + - . b
Y4 + + -+ ab

The fourth column is added for a purpose shown later. The first observation,

denoted by - -, involves the lower levels of both A and B; the second observation,
denoted by + -, involves the higher level of A and the lower level of B; and so on
for the other two observations. In the other notation, where the levels of factor A

and B are denoted by (1), a; and (1), b respectively, the 4 (= 22) possible treatment
combinations, i.e. the combinations of the factor levels, are shown respectively by
(1), a, b, and ab. The sign notation for indicating levels of factors and treatment
combinations is a convenient one, and is also appropriate to apply to the correspond-
ing observations to calculate the main effects.

Thus
the effect of A at lower level of B: Y, - Yq or a - (1)
the effect of A at upper level of B: Y4 -Y3 ab- b

Main effect of A (average): 1/2 (Y, + Yy-Yy-Y3)
or 1/2{a+ab—(1)—b}

In the similar way,
Main effect of B: 1/2 (Y3 +Yq - Yy - Yy)
or 1/2 {b+ab-(1)-a}

These represent two of the comparisons betiween the four observations; the third
comparison is obtained as the difference of the effect of A at lower level of B and
that at upper level of B, yielding the interaction AB; and the signs given in the
fourth column of Table 6.1 are simply the products of the signs for A and B, so
that

Interaction AB: 1/2 { (Y4 - ¥3) = (Y, - Y1)} =1/2(Y; - Yy - Y3+ Y,)

or 1/2{(ab-b)-(a-(1)} =1/2{(1)-a-b+ab}

Assuming the two factors A and B do not interact, the comparison represented
by AB will be zero, apart from experimental error. It is then possible to utilize
the AB comparison to measure the effect of a third factor (provided, as shown later,
that the third factor does not interact with A or B). Denoting the additional factor
by C, we "equate" C to AB in Table 6.1, and the signs then give the levels of
factor C. This results in the design of Table 6.2 for measuring three factors in
four observations.



Table 6.2 Dezign for three factors in four observations

Observation A B C (=AB) Trea.tmer.lt
combination
Y4 = = " -
Yo = - — a
Xs = + - b
Yq v * + abe

The main effect of C is

1/2(Y1 ~Y2—Y3+Y4)or1/2 {C—a—b+abc}

Using the comparison representing interaction AB to measure a main effect C is
referred to as "equating" C to AB.

Another design exists for three factors in four observations, obtained by
equating C to ~AB. The design is similar to that of Table 6.2, but with the signs
of column C reversed. Both are half-factorial designs and the two_together com-
prise the complete factorial design of three factors at two levels (23). The treat-
ment combinations for the two designs are:

Design 1 (C = AB): c, a, b, abc
Design 2 (C = -AB): (1) ac be ab

It is interesting to note that the difference between the two designs represents
the three-factor interaction ABC, which is given by

Interaction ABC = 1/4 { a+b+c+abe - (1) -ab-ac- bc}

Important relationships are apparent upon inspection of Table 6.2: the fact that
C has been equated to AB is shown by the signs of column C being the products of
the signs of A and B, so that the comparison measures C when AB is zero. We see
also that the signs of A are the products of B and C, while the signs of B are the
products of those of A and C. It follows, therefore, that:

The four treatment combinations of Table 6.2 may be used to
estimate three main effects provided all interactions between
them are zero, or may be assumed negligible.

In general, the factors A, B, and C may or may not interact, and therefore it
follows that:

After equating C to AB in a 22 design, the comparison measures

C + AB, and the other comparisons measure A + BC and B + AC
respectively. Similarly, after equating C to —AB, the comparison
measures C - AB, and the other comparisons measure A - BC and
B - AC respectively.

6.3 Construction of Ly and Lg Tables of Orthogonal Arrays

Qur L4 - Table of Orthogonal Arrays is only a version of Table 6.1, where the
signs -+ and - are replaced by 1 and 2, respectively, turn it upside down, and the
first two columns headed by Level of factor A and by that of B are interchanged,
the result being shown in Table 6.3,
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Table 6.3 L4 - Orthogonal Arrays

No. of Arrav Number
observation (1) {2) (3)
1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1
Array "
label @ - “
D
i J
Group 1 5
Number -

The original factorial effects of 22 design shown in Table 6.1 is referred to
the "array label” given by the corresponding letters at the bottom of each
of arrays. 'Capital' letters are left to indicate the factorial effects of a particu-
lar fractional factorial experiment, which are to be assigned to the arrays of the
L.4-Table.

In the similar way, we can easily construct Li-Orthogonal Arrays from the 23
factorial design. as shown in Table 6.4 and 6.5.

Table 6.4 Notation for 27 fuctorial designs

i Factorial effects -
No. of A A B A Treatment
observation A B B (S & (& B combination
C

1 — - < - 4 t — (1 )

2 y " - - = ‘ ' a

3 - ; - - - : b

4 = - = - ab

5 - - - ¢

6 ~ _ | = = ac

T - - - - b

8 i i abce

|

Table 6.5 Lg-Orthogonal Arrays

No. of \rray Nllulb—(.‘-!‘ .
observation (1) (2) (3) (4 (5) (65) (7)
1 1 1 1 | ! 1 1
2 1 1 [ J } 2 2
3 1 2 2 ! | 2 2
4 ] 2 2 2 2 | 1
5 2 1 2 | 2 | 2
6 2 | 2 2 i 2 1
7 2 2 | ! 2 2 1
8 2 2 1 2 | 1 2
Array a b a ¢ u b a
lavel b ¢ e b
(&
PR | | S ek e e o7
Group 1 5 5
number - :




The orthogonal arrays given in the above tables are conveniently used for
getting the necessary treatment combinations in any fractional factorial designs in
4 and 8 observations, if the factorial effects required are assigned to the appropri-
ate arrays of the table. The 'group number' at the bottom of the table is useful in
finding arrays, to which factors in split-plot designs are assigned, because the
figure 1 or 2 in the arrays with 'group number' 1 to 3 appears in groups of 4, 2
and 1.

The notation of the Table Lg (27) shows that:

(1) L is the capital letter of Latin Square, indicating that this orthogonal
property comes from Latin Square.

(2) this table is used for any experiment of 8 observations

(3) ithas 7 orthogonal arrays, the number corresponding to the total degrees
of freedom for 8 observations

(4) all factors applied to this experiment are those at 2 levels.
The 'orthogonal' property means that:
(1) every array has the same number of 1 and 2. (4 for Lg)

(2) every pair of arrays has the same number of the combinations (1, 1),
(1’ 2)1 (2’ 1)’ and (2, 2)- (2 for LS)

6.4 Design of 8 observations (Lg)

Designs of 4 observations cannot cope with more than 3 factors because three
factors exhaust all the independent comparisons between the four observations.
The next larger fractional factorial design of the kind discussed above is one of
eight observations. A design of this size can usually be carried out without
serious practical difficulties, even with complex industrial processes.

Eight observations are sufficient to supply estimates of all main effects and all
interactions for a complete factorial design with three factors each at two levels.
Three main effects denoted by a, b and ¢, three-two~factor interaction by ab, ac
and bc, and one three-factor interaction by abc are given as "array labels" at the
bottom of the arrays, respectively.

If the three-factor interaction ABC may be assumed zero or negligible, the
relevant comparison may be used to examine another factor D by 'equating' D to
the array labelled by abc of Table 6.5.

The design is as Table 6.6.

= I8 =



Table 6.6 Design for four factors in 8 observations - Lg (27) .

No. of Array Number Treatment -
test €D) (2) (3) (4) (5) (6) (1) combination
1 1 1 1 1 1 1 1 abed
2 1 1 1 2 2 2 2 ab
2 1 2 2 1 1 2 2 ac
4 1 2 2 2 2 1 1 ad
5 2 1 2 1 2 1 2 be
6 2 1 2 2 1 2 1 bd
7 2 2 1 1 2 2 1 cd
8 2 2 1 2 1 1 2 (1)
Array a b a ¢ a b a
label b (6 c b
c
Factors A B C D
assigned

This table represents one half of a 24 factorial design, and it is therefore a
half-replicate. In an investigation of the conditions of polymerization process of
synthetic resin the object was to improve the strength of product. Four factors
were examined:

A: percentage of additive agent: A1 =6%, Apr=5%

B: speed of agitation: By =20r.p.m., Bp=15r.p.m.
(r.p.m. = rounds per minute)

C: percentage of catalyser: C1=1.0%, Cp=1.2%

D: supplier of raw material: D4 Dy

It was considered unlikely that there would be large interactions between these
factors, and as a first step it was decided to examine them in eight observations,
i.e. by means of Lg (27)-Table. The comparisons obtained from the arrays No.(3),
(5) and (6) in Table 6.6 were considered to measure the effects caused by experi-
mental error. Randomization of the order of testing these eight treatment combina-
tions was indispensable. The resulting experimental plan and the data are shown
in Table 6.7.

Table 6.7 Experimental Plan

No. of Level of factors data x
Duder test A B C D (coded value)
1 4 6% 15 r.p.m. 1.29% 1 17
2 7 5% 15 r.p.m 1.0% 1 14
3 2 6% 20 r.p.m. 1.2% 2 5
4 5 5% 20 r.p.m. 1.0% 2 0
5 1 6% 20 r.p.m. 1.0% 1 20
6 8 5% 15 r.p.m 1.2% 2 1
7 6 5% 20 r.p.m. 1.2% 1 1
8 3 6% 15 r.p.m. 1.0% & 26
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6.5 Statistical analysis

There are several ways of calculating the effects and variances. The most
straightforward way is to write the data in standard order and calculate the differ-

ence of the two sums; for the first level and for the second level, as shown in Table
6.8.

Table 6.8 Calculation of effects and variances

No. of Array Number data
test (1) (2 (3 4)  (5) (6) (7) X x2
1 1 1 1 1 1 1 1 20 400
2 1 1 1 2 2 2 2 5 25
3 1 2 2 1 1 > 2 26 676
4 i 2 2 2 2 1 1 17 289
5 2 1 2 1 2 1 2 0 0
6 2 1 2 2 1 2 1 1 1
7 2 2 1 1 2 2 1 14 196
8 2 2 1 2 1 1 2 1 1
sum for the first 68 26 40 60 48 38 52 84 1588
level
sum for the second| 16 58 44 24 36 46 32
level
difference (d) 52 =32 -4 36 12 -8 20
effect (d/4) 13 -8 =1 9 3 -2 5
variance (d2/8) 338 128 g 162 18 8 50

Yates has developed a systematic tabular method which is particularly conven-
ient when there are four or more factors. Write down the treatment combinations
and the observations in standard order, as in the first two columns of Table 6.9.

Table 6.9 Calculation of effects and variances by Yates's method

No. of | Data stfect vzi«fr;cé
test (0) (1) (2) (3) (3)/4 (3)2/8
1 abe 20 25 68 84 = total (10.5)* 882 **
2 ab 5 43 16 36 =4 C 9.0 162
3 ac 26 1 24 -32=4B -8.0 128
4 a 17 15 12 -8=4BC =e¢ 2.0 8
5 be 0 15 -18 52 =4 A 13.0 338
6 b 1 9 -14 12=4 AC =e 3.0 18
7 c 14 -1 6 -4=4AB=¢e ~-1.0 2
8 (1) 1 13 -14 20 =4 ABC = 4D 5.0 50
160 Total 1588

% (3)/8, average, *¥ correction factor = (total)?/8
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The column marked (1) is derived from the data column marked (0) as follows.

The first entry in column (1) is the sum of the first two data (20 + 5); the second
=ntry is the sum of the second pair of data (26 + 17); the third and fourth entries

the sums of the succeeding pairs (0 + 1), (14 + 1) respectively. This completes
top half of column (1). The lower half is derived from the data column by taking
:n= differences of the same pairs, the second from the first in every case. Thus
o= first entry in the lower half is (20 - 5), the second (26 - 17), and the other two

o -1), (14 = 1). Column (2) is derived from column (1), and column (3) is derived
irom column (2), in exactly the same way as column (1) was derived from column (0),
ov summing and differencing the pairs of values. These operations yield exactly
the same figures as have been calculated in Table 6.8. The actual effects are then
btained by dividing the entries in column (3) by 4. The number of operations (i.e.
~olumns) of summing and differencing is equal to the number of factors.

The seven effects, A, B, AB, ....., ABC from 23 factorial design involve
seven independent comparisons between the eight observations, and the capital
i=tters showing these effects are given in the column (3) of Table 6.9, correspond-
ing to the second level of arrays a, b and c, and according to the assignment of the
actual factors to the array labels (given in Table 6.6) we can easily identify the
factorial effects concerned. Since each of the quantities in column (3) of Table 6.9
is the algebraic sum of eight observations (in fact a difference between two sums of
four), the sums of squares (equal in this case to the respective variances, there
being only one degree of freedom for each effect) are obtained by squaring the cor-
responding quantities in column (3) and dividing by 8, yielding identically the same
results as those obtained by the method usually given for analysis of variance.
These quantities are given in the final column of table 6.9. Their total including
correction term is 1588, which should agree with the raw sum of squares for the
column (0), viz.:

2, 42 2 2

Raw sum of squares = 202 + 52 + 262 + 172 + 0 + 147 + 1

= 1588

This check is usually sufficient, since compensating errors are unlikely to occur.
A more detailed check on the computation is to use the fact that the sum of all the
figures in the column (3) is equal to 8 times of the first data (8 x 20 = 160).

It is convenient to present the statistical analysis in the form of Table 6.10.

Table 6.10 Analysis of variance of Table 6.9

Sou;‘cg of Degress of Sum of Ve F
variation freedom squares
Total i 706
A 1 338 363 *%
B 1 128 13.8 *
C 1 162 17.4 %
D 1 50 5.4
error 2 28 9+ 3

Combining three sums of squares for the arrays (3), (5) and (6), we obtain an
=s::mate of error variance of 9.3, based on three degrees of freedom. The 5% and
values of F for f1 =1, fo = 3 are 10.1 and 34.1 respectively, so that the effect
=rcentage of additive agent A is highly significant; those of speed of agitation

>f percentage of catalyser are significant at 5% level, and the difference of sup-
li=rs of raw material is not significant at 5% level, and in further experimental

work on this process this factor may be disregarded.
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The actual magnitudes of the significant effects are (see Table 6.9):

Effect of increase in percentage of additive agent A = 13.0
Effect of decrease in speed of agitation B=-8.0

Effect of decrease in percentage of catalyser C= 9.0

The condition for maximising the strength of product is then recognized as
A1 B, C, (i.e. 6% additive agent, 15 r.p.m. and 1.0% catalyser) and the expected
strength under this condition is estimated by

(average) (effect of AT) (effect of B2) (effect of C1)

£15.0 % - x(48.0) %+ — 29.0

1045 + ) 5

rol -

= 25+5 ,
which is quite close to the value of the No. 3 test.

6.6 Confusion of effects in a fractional design. Aliases

Assuming that interactions of all orders are real, it follows that in a half-
replicate each effect is confused with another effect, that is, the effects occur in
pairs; in a quarter-replicate the effects occur in sets of four and each effect is
confused with three others; in a eighth-replicate the effects occur in sets of eight,
and so on. The effects which are confused in this way are termed Aliases. It is
clearly imperative to determine the aliases for any proposed fractional design in
order to avoid confusion of important effects. These aliases may be found from the
assignment of the effects to the orthogonal arrays by multiplving the "array labels"
in all possible ways and grouping the effects measured by the same comparison, that
is, which are assigned to the same array. Applying these procedures to Table 6.6
gives the results shown in Table 6.11.

Table 6.11 Factorial effects of 2% assigned to orthogonal arrays

; \ = Defining
Array Number (1) (2) (3) (4) (5) (6) (7) vy |
Array label a b a c a b a
b (& € b
€
Effects assigned A B A C A B D
(Table 6.6) ! I B il G c h | 1 - ABCD
B A 1 A I I A
C C C B B A B ‘
D D D D D D (&
Effects assigned B A C A D A
(alternative i i B 1 @ i D I BCD
design) A c It B I B i
B D A D A C A
C C B B
D D D C




It should be noted that in the multiplication of array labels the power.is obtained
rv system (that is, mod. (2)); for example

ina

a x abc = a?bc = a%e =be

o
ab ¢ =ae

]

ab x bc = ab2c

It is also possible to systematize the method of obtaining aliases because all
= sets may be obtained from the defining contrasts. For this example, the defin-
ing contrast is

I = ABCD

Miltiplving successively by A, B, C, etc., yields the above aliases given in Table
=.71. This result is perfectly general for all fractional designs, and leads to the

The effects confused with any given effect in a fractional design are
derived by multiplying the defining contrasts by the given effect.
The whole set of comparisons is derived by multiplying the defining
contrasts successively by the main-effects, two-factor interactions,
tc. until all the effects have been accounted for.

[4¥]

In this design we also note that all the main-effects are aliased with only three-
fzctor interactions, and any two-factor interactions with another two-factor inter-
ction. Therefore, if all three-factor interactions are negligible, this design can
sure all main-effects A, B, C and D. And moreover if all two-factor inter-
cns of D with A, B and C were zero, the two-factor interactions AB, AC and
could be evaluated by this design.

oW

W
)

At the bottom of Table 6.11, the alternative design is given, where the array
which the factor D is assigned is'No. (6), being different from the original design.
In this design, all main-effects except A are confused with some of two-factor
.nteractions, and hence this alternative design is not better than the original one.

The following assumptions and principles are usually kept in mind for construct-
ing fractional factorial designs:

(1) All three-factor interactions (and also interactions involving more than
three factors) are considered negligible.

(2) All main-effects should be estimable (that means: they should not be
zliased with other main-effects nor with any two-factor interactions).

(3) To maximise the number of estimable two-factor interactions. (That is:
twc-factor interactions which are not aliased with any other two-factor interactions).
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